Numerical analysis of cooling potential and indoor thermal comfort with a novel hybrid radiant cooling system in hot and humid climates

Author:

Liu Jiying1ORCID,Kim Moon Keun2ORCID,Srebric Jelena3

Affiliation:

1. School of Thermal Engineering, Shandong Jianzhu University, Jinan, China

2. Department of Civil Engineering and Energy Technology, Oslo Metropolitan University, Oslo, Norway

3. Department of Mechanical Engineering, University of Maryland, College Park, MD, USA

Abstract

The study investigates a hybrid radiant cooling system's potential to achieve thermal comfort. The hybrid radiant cooling (HRC) system combines the best features of a typical all-air and conventional chilled radiant cooling system. An HRC system presents the advantages to (a) reduce vapour condensation and to (b) adjust the cooling output by using an Airbox convector. The three systems perceive thermal comfort in the predicted mean vote (PMV) between –0.5 and +0.5 at 25 and 27°C. In the room condition at 31°C, the all-air system has a lower thermal comfort level because the elevated airspeed is less effective when the mean radiant temperature (MRT) is low. This study suggests a cooling strategy to maximize the thermal comfort level by effectively utilizing the HRC in extreme conditions without extra cooling sources. When the designed set point indoor temperature is 25°C, the Airbox convector of the HRC fan can be off. However, if the indoor air temperature increases above 25°C, an occupant can activate the Airbox convector; the actual thermal output of HRC is increased, and the elevated airspeed can reduce the predicted percentage dissatisfied (PPD) level. Even in an extreme indoor thermal condition at 31°C, the HRC minimizes the PPD level.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3