A thermal sensation model for naturally ventilated indoor environments based on deep learning algorithms

Author:

Lei Lei12,Shao Suola12ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China

2. Zhejiang Engineering Research Center of Green and Low Carbon Technologies in Buildings, Hangzhou, China

Abstract

In recent years, with the emphasis on sustainability and energy efficiency, natural ventilation has attracted increasing interest from building designers. Natural ventilation is dependent on the outdoor environments which could change rapidly, and the traditional thermal sensation models such as the predicted mean vote (PMV) are not applicable, correspondingly. The deep belief neural network can reveal nonlinear patterns in processing big data, and it can be used to predict target data with high flexibility and accuracy. This study developed a deep belief neural network model for indoor thermal sensation prediction in naturally ventilated environments with outdoor environment parameters and human factors: outdoor air temperature, average radiant temperature, outdoor air relative humidity, outdoor wind speed, clothing thermal resistance, activity level, gender, age and weight collected in 10 semi-open classrooms and 5 laboratories in April and November when natural ventilation was used. The research compared the performance of deep belief neural networks with three neural networks: BP, Elman and fuzzy neural networks. Results showed that the deep belief neural network can enhance the performance of thermal sensation prediction of natural ventilated indoor environments. The research provides a more flexible and effective solution for thermal comfort prediction of natural ventilated indoor environments.

Funder

Zhejiang Province “spearhead” “bellwether” research and development project

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3