Evaluation of heating performances of different ventilation methods in an office

Author:

Li Teng12,Essah Emmanuel A.3,Wu Yuxin4,Liao Chunhui5,Cheng Yong12ORCID

Affiliation:

1. Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China

2. National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing, China

3. School of Construction Management and Engineering, The University of Reading, Reading, UK

4. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Zhejiang, China

5. Institue for Health and Environment, Chongqing University of Science and Technology, Chongqing, China

Abstract

In this study, 12 cases were investigated in an office-layout room using experiments and computational fluid dynamics (CFD) simulations. The heating performances of four ventilation methods (i.e. mixing ventilation (MV), stratum ventilation (SV), deflection ventilation (DeV) and impinging jet ventilation (IJV)) were comprehensively compared by various evaluation indexes (i.e. predicted mean vote (PMV), draught rate (DR), vertical air temperature difference (△T), air diffusion performance index (ADPI), energy utilization coefficient (EUC), air change efficiency (ACE) and contaminant removal efficiency (CRE)). Better thermal comfort was found in rooms heated by SV and DeV. The PMV, DR and △T under SV and DeV complied with Category B of ISO 7730:2005, and the ADPI was in full compliance with the stipulation of ANSI/ASHRAE 113-2022. For the energy-saving characteristic, the targeted-occupied-zone ventilation methods (i.e. SV, DeV and IJV) can effectively deliver warm air to the occupied zone, with the EUC values higher than unity and thus providing a good potential for energy saving. SV and IJV showed slightly higher ACEs in the breathing zone. The contaminant removal effectiveness of SV, DeV and IJV was comparable. Under the combined influence of occupant thermal plumes and locations of exhausts, MV showed a high CRE. However, the CRE under MV decreased significantly when the exhausts were not above occupants. In the case of supply air parameters in this study, the entropy-weight method indicated that DeV and SV had a better overall performance for winter heating, followed by IJV and then MV.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3