Performance study of heat and mass transfer in a counterflow liquid to air membrane-based parallel-plate dehumidifier

Author:

Taous Abir1ORCID,Ben Nasr Kaouther1,Guizani Amen Allah1

Affiliation:

1. Thermal Process Laboratory Research and Technologies Centre of Energy, Hamam Lif, Tunisia; Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia

Abstract

Liquid to air membrane energy exchanger (LAMEE) is the most important component in a liquid desiccant air conditioning system. Three main configurations of LAMEE are presented in the literature: co-current, counterflow, and cross-counter flow. In this paper, we evaluated the performance of a counterflow LAMEE dehumidifier in terms of its cooling capacity (CC) and moisture removal rate (MRR). A numerical model was developed and validated with experimental results. The impact of solution properties and inlet air characteristics on the LAMEE’s performance were investigated. Simulation results show that CC and MRR are enhanced by decreasing the temperature and increasing the concentration of the liquid desiccant simultaneously. In order to obtain an optimal performance of the LAMEE, the solution mass flow rate should be equal to or slightly higher than the inlet air mass flow rate. On the other hand, we found that both CC and MRR increase with increasing inlet air temperature and relative humidity. Even though solution properties and inlet air characteristics affect the MRR and the CC, they have a negligible effect on the required air sensible cooling to meet the supply air condition (Qsen). The characteristics of outlet air provided by the LAMEE are in a stable state condition, which proves that the LAMEE has a wide range of adaptability in different operating conditions.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3