Estimating droplet size and count distributions over a prolonged period of time following a cough in indoor environments

Author:

Jadidi Mehdi1ORCID,Karataş Ahmet E.2,Dworkin Seth B.3

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada

2. Department of Aerospace Engineering, Toronto Metropolitan University, Toronto, ON, Canada

3. Department of Mechanical, Industrial and Mechatronics Engineering, Toronto Metropolitan University, Toronto, ON, Canada

Abstract

An empirical correlation and a set of machine learning (ML) models were developed to estimate droplet size and count distributions over an extended duration after a cough at different relative humidities (RHs), air temperatures and locations within an indoor environment. Experiments covered RHs of 20%–80% and air temperatures of 21 °C–26 °C. Droplet count distributions for 4 size bins (0.3–0.5, 0.5–1, 1–3 and 3–5 μm) were recorded for 70 min within the distance of 2 m from the cough source. Different ML models, including decision tree, random forest and artificial neural network, were trained for each size bin to predict the associated count distribution. Amongst these models, random forest showed a slight superiority in performance. The coefficient of determination for the random forest models ranged from 0.912 to 0.989, indicating robust correlations between the features and the response variables. An empirical correlation was established linking the count distribution of 0.3–0.5 μm droplets to time, RH and distance along the cough direction. Both ML models and the correlation accurately predicted the trends and the distributions, providing valuable data for validating computational simulations and informing indoor environment control systems to reduce the risk of virus transmission.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3