Optimal diameter of district heating pipe network based on the hybrid operation of distributed variable speed pumps and regulating valves

Author:

Bai Li12ORCID,Liu Hongkai1,Yu Chuck Wah13,Yang Zhen1

Affiliation:

1. School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, China

2. Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, China

3. International Society of the Built Environment (ISBE), Milton Keynes, UK

Abstract

The district heating system that uses the hybrid operation of distributed variable speed pumps and regulating valves can effectively reduce the pressure level at the far-end of the heating network, while retaining the energy saving advantages of the distributed variable speed pump system and ensuring the safe operation of the heating network. In this study, pipe network optimization based on genetic algorithm was used to determine the pipe diameter required for the hybrid operation of distributed variable speed pumps and regulating valves. A mathematical model was established to evaluate the economic efficacy based on the annual equivalent cost. The zero-pressure difference point was evaluated to optimize the pipe diameter. A real pipe network was assessed to evaluate the efficacy of the method, and a sensitivity analysis of pressure constraints and economic factors was conducted. Our results show the system of hybrid operation of distributed variable speed pumps and regulating valves can reduce the annual equivalent cost by about 10.35% compared to the conventional central circulating pump system. In addition, the annual energy consumption due to heat loss and pump operation is only 0.36% higher than that of the conventional central circulating pump system.

Funder

Science and Technology Development Program of Jilin Province

the National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3