Hygro-thermo-chemical transfer analysis of clothing microclimate using three-dimensional digital clothing model and computer-simulated person

Author:

Murota Kei1,Kang Yujin2,Hyodo Sena1,Yoo Sung-Jun3ORCID,Takenouchi Kazuki4,Tanabe Shin-ichi5ORCID,Ito Kazuhide3ORCID

Affiliation:

1. Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga, Japan

2. Department of Architecture and Architectural Engineering, Yonsei University, Seodaemun-gu, Korea

3. Faculty of Engineering Sciences, Kyushu University, Kasuga, Japan

4. Faculty of Design, Kyushu University, Kasuga, Japan

5. Faculty of Science and Engineering, Waseda University, Tokyo, Japan

Abstract

Several studies regarding indoor environmental quality assessments based on computational human models have been reported. Recently, various computer-simulated persons for computational fluid dynamics (CFD) simulations that reproduce a detailed human body geometry has been developed. However, clothing is usually treated with simplification as a resistance to heat/contaminant transfer, and detailed hygro-thermo-chemical transfer phenomena in clothing-centred area with complex geometry have not been fully discussed. It is also important to investigate the ventilation characteristics inside the air gap between the clothing and the human body. Thus, this study aimed to develop an analytical method of three-dimensional clothing model that can be applied to a computer-simulated person (CSP) for indoor computational fluid dynamics analysis. To identify the impact of the clothing model on the human and the microclimate around the body, hygro-thermo-chemical transfer analyses were conducted in a virtual simplified model room. By reproducing the detailed clothing geometry, ventilation inside the air gap and clothing-centred hygro-thermo-chemical transfer characteristics were quantitatively investigated. The data analysis technique established in this study could contribute to preparing foundational data for simplification of numerical modelling of clothing.

Funder

Japan Society for the Promotion of Science

Taisei Foundation Research Grant

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3