Chemistry and indoor air quality in a multi-storey wooden passive (low energy) building: Formation of peroxyacetyl nitrate

Author:

Fischer A.1,Langer S.23,Ljungström E.1

Affiliation:

1. Department of Chemistry and Molecular Biology, Atmospheric Sciences, University of Gothenburg, Göteborg, Sweden

2. SP Technical Research Institute of Sweden, Chemistry and Materials Technology, Borås, Sweden

3. IVL Swedish Environmental Research Institute, Göteborg, Sweden

Abstract

Indoor air measurements were conducted in one unoccupied apartment of a ‘near-zero-energy’ residential building with a unique, wooden construction. Ozone, NO2, fine particles and volatile organic compounds, formaldehyde, acetaldehyde and peroxyacetyl nitrate (PAN) were measured under ‘as is’ conditions and after intentional intervention by adding ozone to simulate an ambient air ozone episode. Undisturbed concentrations were: O3 5–10 ppb, NO2 5–8 ppb, fine particles 2000–5000 cm−3, formaldehyde 35 ± 5 µg/m3, PAN 0.3 ppb. During intervention, O3 was 50–60 ppb, NO2 15–20 ppb, fine particles 20,000–25,000 cm−3, formaldehyde 44 ± 2 µg/m3 and PAN 0.7–1 ppb. It was shown that chemical reactions had taken place in the indoor air. Ozone-initiated chemistry produced various aldehydes, PAN and, as a direct response to increased ozone concentrations, also fine particles. Calculations made by a simple model of PAN formation showed that an air change rate of around 0.2 h−1 would provide optimum conditions for PAN formation in a setting comparable to that of the investigated apartment. This air change rate is well below the Swedish national minimum of 0.5 h−1. Further, the calculations show that the non-photochemical PAN formation could be a consequence of mixing ozone and nitrogen dioxide with terpenes and acetaldehyde.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measured and perceived indoor air quality in three low-energy wooden test buildings;Wood Material Science & Engineering;2022-05-24

2. Using Real Time Measurements to Derive the Indoor and Outdoor Contributions of Submicron Particulate Species and Trace Gases;Toxics;2022-03-29

3. Indoor Gas-Phase Chemistry;Handbook of Indoor Air Quality;2022

4. Indoor Gas-Phase Chemistry;Handbook of Indoor Air Quality;2021

5. Indoor Air Quality in Passivhaus Dwellings: A Literature Review;International Journal of Environmental Research and Public Health;2020-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3