Numerical study on using vortex flow to improve smoke exhaust efficiency in large-scale atrium fires

Author:

Fang Xiang1,Yuen Anthony CY2,Yeoh Guan H23,Lee Eric WM4,Cheung Sherman CP1ORCID

Affiliation:

1. School of Engineering, RMIT University, Melbourne, Australia

2. School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia

3. Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, Australia

4. Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong

Abstract

A high-performance smoke exhaust system is vital for maintaining a tenable environment during fire accidents evacuation. This study proposes a novel vortex flow driven smoke exhaust system to delay the smoke filling process during the atrium fire accident. The complex fluid movement and combustion reactions were predicted using Fire Dynamics Simulator, and the predicted smoke filling process was identified by the least-square method. Good agreements between numerical predictions and experimental measurements for vertical temperature, tangential velocity profile and smoke interface height were achieved. The numerical outcomes revealed that the amount of fresh air supplied, heat release rate and exhaust fan's rate determined the smoke interface's final height. A parametric study was also carried out to investigate the dominating factor in maintaining a stable vortex flow to maximize the smoke exhaust efficiency. Numerical results showed that the vortex flow smoke exhaust system could slow down the smoke filling, and the stability of the swirling fire is crucial for the system's performance.

Funder

The Australian Research Council Industrial Training Transformation Centre

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3