Characteristics of indoor human-induced particle resuspension under different ventilation conditions

Author:

Sun Zenan1,Zheng Shuihua1,Fu Yueyao1,Chai Min12ORCID

Affiliation:

1. Institute of Process Equipment and Control Engineering, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China;

2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China

Abstract

This study performed a series of experiments to study the characteristics of human-induced particle resuspension under different ventilation conditions. Four modes of supplied airspeed were evaluated: no wind, low wind (2.742 m/s), medium wind (3.849 m/s) and high wind (4.422 m/s). Results show that the steady-state particle concentration can be approximated as a linear function of the airspeed. Human walking and ventilation conditions can have a significant and coupling role in particle behaviours. In particular, human walking provides initial energy for resuspension by disturbing the local fields, and thus increases the resuspension, especially for large particles of 5–10 μm in size. The wind has two competitive effects, that is, supplying energy to keep particles suspended and pushing the particles downward, and the latter becomes dominant when the airspeed was too high. Consequently, intermediate airspeeds can intensify the effect of human walking, and introduce higher peaks of particle concentration in the human-walking stages. As for the particle number density, similar conclusions can be drawn that the effect of ventilation conditions is more pronounced on small particles less than 1 μm while that of human walking is on large particles. This work lays a foundation for revealing the particle resuspension mechanism.

Funder

National Natural Science Foundation of China

State Key Laboratory of Clean Energy Utilization

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3