The total terpenoids of Celastrus orbiculatus (TTC) inhibit NOX-dependent formation of PMA-induced neutrophil extracellular traps (NETs)

Author:

Tao Li12,Xu Min12,Liu Yanqing12

Affiliation:

1. College of Medicine, Yangzhou University, Yangzhou, China

2. The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, College of Medicine, Yangzhou University, Yangzhou, China

Abstract

Previously, we identified that Celastrus orbiculatus, a traditional Chinese herbal medicine, exhibited prominent anti-inflammatory and anti-tumor activities. More recently, the formation of neutrophil extracellular traps (NETs) or NETosis has been recognized as a critical pathological event in the development of inflammatory and autoimmune diseases. The present study is aimed to explore the pharmacological effect of the total terpenoids from the stems of C. orbiculatus (TTC) on NETosis and underlying mechanisms, which may provide fundamental knowledge for future utilization of the Chinese medicine. Human neutrophils were isolated by density gradient centrifugation; lactase dehydrogenase (LDH) assay was used to detect cytotoxic effect of TTC on neutrophils. Moreover, we established phorbol-12-myristate-13-acetate (PMA)-induced NETosis. Quantitative and qualitative study of PMA-induced NET release was labeled by SYTOX™ Green. ROS production was determined by flow cytometry. The neutrophil NADPH oxidase (NOX) activity was assessed by lucigenin chemiluminescence assay, and the phosphorylation of NOX subunit was analyzed by immunoblot assay. TTC (5–80 μg.mL−1) had no predominant neutrophil cytotoxicity after 4 h exposure. PMA (200 ng.mL−1) significantly induced the formation of NETs after 4 h stimulus, whereas TTC dose-dependently (5–80 μg.mL−1) inhibited the process. TTC (40 μg.mL−1) blocked neutrophil elastase (NE) and myeloperoxidase (MPO) translocation from cytoplasm to nucleus and disrupted the formation of NET-associated deoxyribonucleic acid (DNA)–MPO and DNA–NE complexes. Moreover, TTC dose-dependently blocked PMA-mediated ROS production, and inhibited the NOX enzymatic activity of neutrophils upon PMA stimulus for 1 h. Finally, TTC suppressed PMA-induced phosphorylation of NOX subunit p40phox on Thr154 residue. TTC inhibited PMA-induced NOX phosphorylation, thereby suppressing NOX enzymatic activity and ROS generation in neutrophils undergoing NETosis. Consequently, TTC disrupted NETosis in the early stage of NOX-dependent NETs formation, which might serve as a promising anti-inflammatory agent by targeting suicidal NETosis.

Funder

Yangzhou University for Science and Technology Innovation Project

Jiangsu Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Young Scientists Fund of the National Natural Science Foundation of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3