Adipose Stem Cell–Derived Exosomes Ameliorate Chronic Rotator Cuff Tendinopathy by Regulating Macrophage Polarization: From a Mouse Model to a Study in Human Tissue

Author:

Wang Chongyang1,Zhang Yao1,Zhang Guangcheng1,Yu Weilin1,He Yaohua2

Affiliation:

1. Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

2. Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China

Abstract

Background: Chronic rotator cuff (RC) tendinopathy is one of the most prevalent causes of shoulder pain. Growing evidence suggests that macrophages play a significant role in the proinflammatory response, resolution of inflammation, and tissue healing of tendinopathy. In particular, enhancement of M2 macrophage (M2φ) activity contributes to the accelerated healing of tendinopathy. Therefore, a treatment that enhances M2φ polarization would be useful for patients with this common musculoskeletal disorder. Purpose: To investigate whether adipose stem cell–derived exosomes (ASC-Exos) enhance M2φ polarization and ameliorate chronic RC tendinopathy. Study Design: Controlled laboratory study. Methods: First, we compared the effects of ASC-Exos on polarization of mouse bone marrow–derived macrophages between a classically activated phenotype (M1φ) and an alternatively activated phenotype (M2φ) in vitro. In total, 72 C57BL/6 mice were assigned to normal cage activity (n = 24) or 5 weeks of treadmill overuse (n = 48). The supraspinatus tendon of each treadmill overuse mouse was treated with ASC-Exos (n = 24) or saline (n = 24). Histological and biomechanical outcomes were assessed 4 weeks after treatment. Finally, tissue samples from human patients with RC tendinopathy were obtained to assay the effect of ASC-Exos on the M1φ/M2φ balance in tissue-resident macrophages. Results: ASC-Exos inhibited M1φ polarization and augmented M2φ polarization in vitro and in vivo. Mice in the ASC-Exos group showed less severe pathological changes than those in the saline group, including less cellular infiltration, disorganization of collagen, and ground substance deposition. The modified Bonar score of the ASC-Exos group (mean ± SD, 7.68 ± 1.03) was significantly lower than that of the saline group (9.81 ± 0.96; P < .05). Furthermore, the maximum failure load was significantly higher in the ASC-Exos group than in the saline group (4.23 ± 0.66 N vs 3.86 ± 0.65 N; P < .05), as was stiffness (3.38 ± 0.34 N/m vs 2.68 ± 0.49 N/m; P < .05). Conclusion: ASC-Exos–mediated polarization balance of M1φ/M2φ contributes to the amelioration of chronic RC tendinopathy. Regulation of the M1φ/M2φ balance could be a new target for the treatment of chronic RC tendinopathy. Clinical Relevance: Administration of ASC-Exos is a cell-free approach that may become a novel treatment option for chronic RC tendinopathy and should be explored further.

Funder

national natural science foundation of china

natural science foundation of shanghai

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3