Comparison of ACL Strain in the MCL-Deficient and MCL-Reconstructed Knee During Simulated Landing in a Cadaveric Model

Author:

Mancini Eric J.1,Kohen Robert1,Esquivel Amanda O.1,Cracchiolo Allison M.1,Lemos Stephen Edward1

Affiliation:

1. DMC Sports Medicine, Detroit Medical Center, Warren, Michigan, USA

Abstract

Background: Noncontact anterior cruciate ligament (ACL) injury after valgus landing has been reported and studied biomechanically. However, the role of the medial collateral ligament (MCL) in dissipating these forces has not been fully elucidated. Purpose/Hypothesis: The purpose of this study was to investigate the role that the MCL plays in ACL strain during simulated landing. The hypothesis was that ACL strain would increase significantly in MCL-incompetent knees compared with the native knee and that reconstructing the MCL would return the values to those of the intact knee. Study Design: Controlled laboratory study. Methods: Eight fresh-frozen human cadaveric knees were used in this study. A materials testing machine applied a force of 2× body weight over 60 milliseconds to simulate landing after a jump. The knees were tested in 12 loading conditions, consisting of full extension or 15° of flexion combined with 7° of valgus or neutral alignment while the tibia was in external rotation, neutral rotation, or internal rotation. This test procedure was repeated on each specimen with the MCL transected and reconstructed. The superficial and deep MCL was transected along with the posterior oblique ligament, which was thought to simulate a worst case scenario. The MCL was reconstructed by use of semitendinosus and gracilis tendon grafts. Results: During internal rotation at 0° of flexion and 0° of valgus, both the intact ( P = .005) and the reconstructed ( P = .004) MCL states placed significantly lower strain on the ACL than did the transected MCL. The reconstructed MCL state at 0° of flexion and 7° of valgus ( P = .049) along with 15° of flexion and 0° of valgus ( P = .020) also placed significantly lower strain on the ACL than did the transected MCL. For external rotation testing at 0° of flexion and 7° of valgus, the reconstructed MCL state placed significantly lower strain on the ACL than did the transected MCL ( P = .039). Finally, during neutral rotation, the ACL strain at 0° of valgus and 0° of flexion, and at 7° of valgus and 0° of flexion was significantly lower for the MCL-intact groups ( P < .028) and MCL-reconstructed groups ( P < .016) than the MCL-transected groups. Conclusion: The current findings demonstrate that during valgus landing, a knee with an incompetent MCL puts the ACL under increased strain. These values are highest in full extension with the tibia in internal and neutral rotation. This increased strain can be reduced to baseline levels with reconstruction. Clinical Relevance: A knee with an incompetent MCL puts the ACL under increased strain. Once the MCL has healed in an elongated manner, MCL reconstruction should be considered.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3