Prediction of Retear After Arthroscopic Rotator Cuff Repair Based on Intraoperative Arthroscopic Images Using Deep Learning

Author:

Cho Sung-Hyun1ORCID,Kim Yang-Soo1ORCID

Affiliation:

1. Department of Orthopedic Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea

Abstract

Background: It is challenging to predict retear after arthroscopic rotator cuff repair (ARCR). The usefulness of arthroscopic intraoperative images as predictors of the ARCR prognosis has not been analyzed. Purpose: To evaluate the usefulness of arthroscopic images for the prediction of retear after ARCR using deep learning (DL) algorithms. Study Design: Cohort study (Diagnosis); Level of evidence, 2. Methods: In total, 1394 arthroscopic intraoperative images were retrospectively obtained from 580 patients. Repaired tendon integrity was evaluated using magnetic resonance imaging performed within 2 years after surgery. Images obtained immediately after ARCR were included. We used 3 DL architectures to predict retear based on arthroscopic images. Three pretrained DL algorithms (VGG16, DenseNet, and Xception) were used for transfer learning. Training and test sets were split into 8:2. Threefold stratified validation was used to fine-tune the hyperparameters using the training data set. The validation results of each fold were evaluated. The performance of each model in the test set was evaluated in terms of accuracy, area under the receiver operating characteristic curve (AUC), F1-score, sensitivity, and specificity. Results: In total, 1138 and 256 arthroscopic images were obtained from 514 patients and 66 patients in the nonretear and retear groups, respectively. The mean validation accuracy of each model was 83% for VGG16, 89% for Xception, and 91% for DenseNet. The accuracy for the test set was 76% for VGG16, 87% for Xception, and 91% for DenseNet. The AUC was highest for DenseNet (0.92); it was 0.83 for VGG16 and 0.91 for Xception. For the test set, the specificity and sensitivity were 0.93 and 0.84 for DenseNet, 0.89 and 0.84 for Xception, and 0.70 and 0.80 for VGG16, respectively. Conclusion: The application of DL algorithms to intraoperative arthroscopic images has demonstrated a high level of accuracy in predicting retear occurrences.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3