Changes in the Length of Virtual Anterior Cruciate Ligament Fibers during Stability Testing

Author:

Brophy Robert H.1,Voos James E.1,Shannon Fintan J.2,Granchi Carinne C.3,Wickiewicz Thomas L1,Warren Russell F.1,Pearle Andrew D.1

Affiliation:

1. Hospital for Special Surgery, New York, New York

2. Merlin Park Hospital, Galway, Ireland

3. Praxim Inc, Grenoble, France

Abstract

Background Conventional tunnel positions for single-bundle (SB) transtibial anterior cruciate ligament (ACL) reconstruction are located in the posterolateral (PL) tibial footprint and the anteromedial (AM) femoral footprint, resulting in an anatomic mismatch graft that is more vertical than native fibers. This vertical mismatch position may significantly influence the ability of an ACL graft to stabilize the knee. Hypothesis Anatomic ACL fibers undergo a greater change in length during anterior translation and internal rotation than a conventional SB reconstruction from the PL tibial footprint to the AM femoral footprint. Study Design Controlled laboratory study. Methods The Praxim ACL Surgetics navigation system was used to acquire kinematic data during a flexion/extension cycle and to register all points within the ACL footprint from 5 fresh-frozen cadaveric knees. Virtual fibers were placed in the center of the AM and PL bundles as well as central and conventional SB positions. After transection of the ACL, the absolute length change and apparent strain of the fibers were computed for each knee during the Lachman and anterior drawer tests and internal rotation at 0° and 30° of flexion. Results Each of the anatomic fibers (AM, PL, and central) had more elongation and apparent strain than the conventional SB fiber during the Lachman maneuver. During the anterior drawer test, the AM and central (but not the PL) fibers lengthened significantly more and the AM had more apparent strain than the conventional SB fiber. During internal rotation at 0° and 30° of flexion, anatomic fibers elongated significantly more than the conventional fiber. Except for the AM fiber with the knee at full extension, apparent strain was greater in all anatomic fibers than in the conventional SB fiber during internal rotation maneuvers. Conclusion In ACL-deficient cadaveric knees, anatomic fibers undergo greater elongation and apparent strain in response to anterior translation and internal rotation maneuvers than a conventional SB graft. Because of their optimal orientation, anatomic fibers may resist pathologic anterior translation and internal rotation more than the conventional SB position. Clinical Relevance Conventional placement of a single-bundle graft results in suboptimal changes in fiber length and strain, suggesting that alternatives such as anatomic placement of an SB graft or double-bundle reconstruction may result in greater control of translation and rotation.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3