Patellar Tendon Strain is Increased at the Site of the Jumper's Knee Lesion during Knee Flexion and Tendon Loading

Author:

Lavagnino Michael1,Arnoczky Steven P.1,Elvin Niell1,Dodds Julie1

Affiliation:

1. Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan

Abstract

Background Patellar tendinopathy (jumper's knee) is characterized by localized tenderness of the patellar tendon at its origin on the inferior pole of the patella and a characteristic increase in signal intensity on magnetic resonance imaging at this location. However, it is unclear why the lesion typically occurs in this area of the patellar tendon as surface strain gauge studies of the patellar tendon through the range of motion have produced conflicting results. Hypothesis The predicted patellar tendon strains that occur as a result of the tendon loads and patella-patellar tendon angles (PPTAs) experienced during a jump landing will be significantly increased in the area of the patellar tendon associated with patellar tendinopathy. Study Design Descriptive laboratory study. Methods A 2-dimensional, computational, finite element model of the patella-patellar tendon complex was developed using anatomic measurements taken from lateral radiographs of a normal knee. The patella was modeled with plane strain rigid elements, and the patellar tendon was modeled with 8-node plane strain elements with neo-Hookean material properties. A tie constraint was used to join the patellar tendon and patella. Patella-patellar tendon angles corresponding to knee flexion angles between 0° and 60° and patellar tendon strains ranging from 5% to 15% were used as input variables into the computational model. To determine if the location of increased strain predicted by the computational model could produce isolated tendon fascicle damage in that same area, 5 human cadaveric patella-patellar tendon-tibia specimens were loaded under conditions predicted by the model to significantly increase localized tendon strain. Pre- and posttesting ultrasound images of the patella–patellar tendon specimens were obtained to document the location of any injured fascicles. Results Localized tendon strain at the classic location of the jumper's knee lesion was found to increase in association with an increase in the magnitude of applied patellar tendon strain and a decrease in the PPTA. The principal stresses and strains predicted by the model for this localized area were tensile and not compressive in nature. Applying the tendon strain conditions and PPTA predicted by the model to significantly increase localized strain resulted in disruption of tendon fascicles in 3 of the 5 cadaveric specimens at the classic location of the patellar tendinopathy lesion. Conclusion The localized increase in patellar tendon strain that occurs in response to the application of tendon loads and decreased PPTA could induce microdamage at the classic location of the jumper's knee lesion. Clinical Relevance The association of decreasing PPTA with increasing localized tendon strain would implicate the role of knee-joint angle as well as tendon force in the etiopathogenesis of jumper's knee.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3