Intra-articular Injection of Bevacizumab Enhances Bone Marrow Stimulation–Mediated Cartilage Repair in a Rabbit Osteochondral Defect Model

Author:

Utsunomiya Hajime12ORCID,Gao Xueqin32ORCID,Cheng Haizi42,Deng Zhenhan42,Nakama Gilberto12,Mascarenhas Randy42,Goldman Julia L.52,Ravuri Sudheer K.12,Arner Justin W.12,Ruzbarsky Joseph J.12,Lowe Walter R.42,Philippon Marc J.12,Huard Johnny32

Affiliation:

1. Center for Regenerative Sports Medicine at the Steadman Philippon Research Institute, Vail, Colorado, USA

2. Investigation performed at University of Texas Health Science Center, Houston, Texas, USA

3. Center for Regenerative Sports Medicine at the Steadman Philippon Research Institute, Vail, Colorado, USA; Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA

4. Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA

5. Center for Laboratory Animal Medicine & Care, University of Texas Health Science Center, Houston, Texas, USA

Abstract

Background: Bone marrow stimulation (BMS) via microfracture historically has been a first-line treatment for articular cartilage lesions. However, BMS has become less favorable because of resulting fibrocartilage formation. Previous studies have shown that angiogenesis blockade promotes cartilage repair. Bevacizumab is a Food and Drug Administration–approved medication used clinically to prevent angiogenesis. Hypothesis: The intra-articular injection of bevacizumab would prevent angiogenesis after BMS and lead to improved cartilage repair with more hyaline-like cartilage. Study Design: Controlled laboratory study. Methods: The dose of bevacizumab was first optimized in a rabbit osteochondral defect model with BMS. Then, 48 rabbits (n = 8/group/time point) were divided into 3 groups: osteochondral defect (defect), osteochondral defect + BMS (BMS group), and osteochondral defect + BMS + bevacizumab intra-articular injection (bevacizumab group). Rabbits were sacrificed at either 6 or 12 weeks after surgery. Three-dimensional (3D) micro–computed tomography (microCT), macroscope score, modified O’Driscoll histology scores, collagen type 2, Herovici staining, and hematoxylin and eosin staining were performed. Angiogenesis markers were also evaluated. Results: The intra-articular dose of 12.5 mg/0.5 mL bevacizumab was found to be effective without deleteriously affecting the subchondral bone. Intra-articular injection of bevacizumab resulted in significantly improved cartilage repair for the bevacizumab group compared with the BMS or the defect group based on 3D microCT, the macroscope score (both P < .05), the modified O’Driscoll histology score ( P = .0034 and P = .019 vs defect and BMS groups, respectively), collagen type 2, Herovici staining, and hematoxylin and eosin staining at 6 weeks. Cartilage in the bevacizumab group had significantly more hyaline cartilage than did that in other groups. At 12 weeks, the cartilage layer regenerated in all groups; however, the bevacizumab group showed more hyaline-like morphology, as demonstrated by microCT, histology scores ( P < .001 and .0225 vs defect and BMS groups, respectively), histology, and immunohistochemistry. The bevacizumab injection did not significantly change mRNA expressions of smooth muscle actin, vascular endothelial growth factor, or hypoxia-inducible factor-1 alpha. Conclusion: Intra-articular injection of bevacizumab significantly enhanced the quality and quantity of hyaline-like cartilage after BMS in a rabbit model. Future large-animal and human studies are necessary to evaluate the clinical effect of this therapy, which may lead to improved BMS outcomes and thus the durability of the regenerated cartilage. Clinical Relevance: The use of bevacizumab may be an important clinical adjunct to improve BMS-mediated cartilage repair.

Funder

XXXXX

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3