An Anterior Cruciate Ligament Failure Mechanism

Author:

Chen Junjie12,Kim Jinhee2,Shao Wenhao2,Schlecht Stephen H.13,Baek So Young3,Jones Alexis K.2,Ahn Taeyong4,Ashton-Miller James A.3,Banaszak Holl Mark M.5,Wojtys Edward M.1

Affiliation:

1. Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA

2. Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA

4. Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA

5. Department of Chemical Engineering, Monash University, Clayton, Australia

Abstract

Background: Nearly three-quarters of anterior cruciate ligament (ACL) injuries occur as “noncontact” failures from routine athletic maneuvers. Recent in vitro studies revealed that repetitive strenuous submaximal knee loading known to especially strain the ACL can lead to its fatigue failure, often at the ACL femoral enthesis. Hypothesis: ACL failure can be caused by accumulated tissue fatigue damage: specifically, chemical and structural evidence of this fatigue process will be found at the femoral enthesis of ACLs from tested cadaveric knees, as well as in ACL explants removed from patients undergoing ACL reconstruction. Study Design: Controlled laboratory study. Methods: One knee from each of 7 pairs of adult cadaveric knees were repetitively loaded under 4 times–body weight simulated pivot landings known to strain the ACL submaximally while the contralateral, unloaded knee was used as a comparison. The chemical and structural changes associated with this repetitive loading were characterized at the ACL femoral enthesis at multiple hierarchical collagen levels by employing atomic force microscopy (AFM), AFM–infrared spectroscopy, molecular targeting with a fluorescently labeled collagen hybridizing peptide, and second harmonic imaging microscopy. Explants from ACL femoral entheses from the injured knee of 5 patients with noncontact ACL failure were also characterized via similar methods. Results: AFM–infrared spectroscopy and collagen hybridizing peptide binding indicate that the characteristic molecular damage was an unraveling of the collagen molecular triple helix. AFM detected disruption of collagen fibrils in the forms of reduced topographical surface thickness and the induction of ~30- to 100-nm voids in the collagen fibril matrix for mechanically tested samples. Second harmonic imaging microscopy detected the induction of ~10- to 100-µm regions where the noncentrosymmetric structure of collagen had been disrupted. These mechanically induced changes, ranging from molecular to microscale disruption of normal collagen structure, represent a previously unreported aspect of tissue fatigue damage in noncontact ACL failure. Confirmatory evidence came from the explants of 5 patients undergoing ACL reconstruction, which exhibited the same pattern of molecular, nanoscale, and microscale structural damage detected in the mechanically tested cadaveric samples. Conclusion: The authors found evidence of accumulated damage to collagen fibrils and fibers at the ACL femoral enthesis at the time of surgery for noncontact ACL failure. This tissue damage was similar to that found in donor knees subjected in vitro to repetitive 4 times–body weight impulsive 3-dimensional loading known to cause a fatigue failure of the ACL. Clinical Relevance: These findings suggest that some ACL injuries may be due to an exacerbation of preexisting hierarchical tissue damage from activities known to place larger-than-normal loads on the ACL. Too rapid an increase in these activities could cause ACL tissue damage to accumulate across length scales, thereby affecting ACL structural integrity before it has time to repair. Prevention necessitates an understanding of how ACL loading magnitude and frequency are anabolic, neutral, or catabolic to the ligament.

Funder

national institute of arthritis and musculoskeletal and skin diseases

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3