Infrapatellar Fat Pad Mesenchymal Stromal Cell–Derived Exosomes Accelerate Tendon-Bone Healing and Intra-articular Graft Remodeling After Anterior Cruciate Ligament Reconstruction

Author:

Xu Junjie1ORCID,Ye Zipeng1ORCID,Han Kang1,Zheng Ting1,Zhang Tianlun1,Dong Shikui1,Jiang Jia1,Yan Xiaoyu1,Cai Jiangyu1,Zhao Jinzhong1

Affiliation:

1. Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

Abstract

Background: Exosomes derived from mesenchymal stromal cells (MSCs) reportedly enhance the healing process. However, no studies have investigated the effect of exosomes from infrapatellar fat pad (IPFP) MSCs on tendon-bone healing and intra-articular graft remodeling after anterior cruciate ligament reconstruction (ACLR). Purpose: To evaluate the in vivo effect of exosomes from IPFP MSCs on tendon-bone healing and intra-articular graft remodeling in a rat model of ACLR. Study Design: Controlled laboratory study. Methods: A total of 90 skeletally mature male Sprague Dawley rats underwent unilateral ACLR using an autograft. All rats were randomly divided into 3 groups: sham injection (SI) group (n = 30), control injection (CI) group (n = 30), and IPFP MSC–derived exosome injection (IMEI) group (n = 30). At 2, 4, and 8 weeks postoperatively, tendon-bone healing and intra-articular graft remodeling were evaluated via biomechanical testing, micro–computed tomography, and histological analysis; macrophage polarization was evaluated using immunohistochemical staining. Results: Biomechanical testing demonstrated a significantly higher failure load and stiffness in the IMEI group than in the SI and CI groups at 4 and 8 weeks postoperatively. Moreover, a thinner graft-to-bone healing interface with more fibrocartilage was observed in the IMEI group at both time points. Micro–computed tomography revealed greater new bone ingrowth in the IMEI group than in the other groups, as demonstrated by smaller mean bone tunnel areas and a larger bone volume/total volume ratio. Additionally, more cellular infiltration was observed in the intra-articular graft in the IMEI group than in the other groups at 4 weeks, followed by more regularly organized fibers with mature collagen at 8 weeks. Notably, similar trends of macrophage polarization were found at both the graft-to-bone interface and the intra-articular graft in the IMEI group, with significantly fewer proinflammatory M1 macrophages and larger numbers of reparative M2 macrophages than in the SI and CI groups. Conclusion: IPFP MSC–derived exosomes accelerated tendon-bone healing and intra-articular graft remodeling after ACLR, which may have resulted from the immunomodulation of macrophage polarization. Clinical Relevance: The IPFP can be easily harvested by most orthopaedic surgeons. Exosomes from IPFP MSCs, constituting a newly emerging cell-free approach, may represent a treatment option for improving tendon-bone healing and intra-articular graft remodeling after ACLR.

Funder

National Key Research and Development Program of China

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Natural Science Foundation of Shanghai

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3