Kinematics of Anterior Cruciate Ligament Ruptures in World Cup Alpine Skiing

Author:

Bere Tone1,Mok Kam-Ming1,Koga Hideyuki12,Krosshaug Tron1,Nordsletten Lars13,Bahr Roald1

Affiliation:

1. Oslo Sports Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway

2. Section of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan

3. Orthopaedic Department, Oslo University Hospital, Oslo, Norway

Abstract

Background: Based on visual video analyses of 20 injury situations, the main mechanism of anterior cruciate ligament (ACL) injury in World Cup alpine skiing, termed the “slip-catch” mechanism, was identified. This situation is characterized by a common pattern in which the inside edge of the outer ski catches the snow surface while turning, forcing the knee into valgus and tibial internal rotation. To describe the exact joint kinematics at the time of injury, a more sophisticated approach is needed. Purpose: To describe the knee and hip kinematics in 2 slip-catch situations utilizing a model-based image-matching (MBIM) technique. Study Design: Descriptive laboratory study. Methods: Two typical slip-catch situations in World Cup alpine skiing reported through the International Ski Federation (FIS) Injury Surveillance System were captured on video with several camera views and high video quality. The injury situations were analyzed using the MBIM technique to produce continuous measurements of knee and hip joint kinematics. Results: Within 60 milliseconds, the knee flexion angle increased rapidly from 26° to 63° in case 1 and from 39° to 69° in case 2. In the same period, we observed a rapid increase in internal rotation of the tibia with a peak of 12° and 9°, respectively. The knee valgus angle changed less markedly in both cases. We also observed a rapid increase of hip flexion as well as substantial hip internal rotation. Conclusion: Knee compression and knee internal rotation and abduction torque are important components of the injury mechanism in a slip-catch situation. Clinical Relevance: Prevention efforts should focus on avoiding a forceful tibial internal rotation in combination with knee valgus.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3