Two-Bundle Posterior Cruciate Ligament Reconstruction

Author:

Mannor Dana A.1,Shearn Jason T.2,Grood Edward S.2,Noyes Frank R.1,Levy Martin S.3

Affiliation:

1. Cincinnati Sportsmedicine and Orthopaedic Center, Cincinnati, Ohio

2. Noyes-Giannestras Biomechanics Laboratories, Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, the Orthopaedic Center, Cincinnati, Ohio

3. Department of Quantitative Analysis, University of Cincinnati, and the Orthopaedic Center, Cincinnati, Ohio

Abstract

This study had two purposes: first, to determine how femoral attachment location affects the load sharing between the two bundles of a Y-type posterior cruciate ligament reconstruction, and second, to determine how the bundles, separately and in combination, control posterior tibial translation throughout the full range of knee flexion. One and two-bundle reconstructions were performed in 12 cadaveric knees. The one-bundle reconstructions were attached within the femoral posterior cruciate ligament footprint at one of three locations, high and shallow (S 1), mid and shallow (S2), or mid and deep (D). The two-bundle reconstructions comprised an S1 bundle with either an S2 or a D bundle. Posterior translation and bundle tension were measured as the knee was flexed from full extension to 120° of flexion while a posterior force of either 50 or 100 N was applied to the proximal tibia. The shallow one-bundle reconstruction restored posterior translation to within 2 mm of that of the intact knee over the entire range of knee flexion. The deep reconstruction did not control abnormal posterior translation above 45°. The tension in the shallow bundles increased with knee flexion, and the deep bundle tension remained nearly constant throughout knee flexion. Both two-bundle reconstructions controlled posterior translation, but with different load-sharing characteristics. The S1-S2 configuration resisted posterior tibial translation as both bundles became taut in flexion. In contrast, the S1-D configuration resisted posterior translation in a reciprocal fashion with the D bundle tension being the greatest in extension and the S1 bundle tension being the greatest tension in flexion.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3