In Vivo Tibiofemoral Kinematics During 4 Functional Tasks of Increasing Demand Using Biplane Fluoroscopy

Author:

Myers Casey A.12,Torry Michael R.13,Shelburne Kevin B.2,Giphart J. Erik1,LaPrade Robert F.1,Woo Savio L-Y.4,Steadman J. Richard1

Affiliation:

1. Biomechanics Research Laboratory, Steadman Philippon Research Institute, Vail, Colorado

2. Department of Mechanical and Materials Engineering, University of Denver, Denver, Colorado

3. Department of Kinesiology, Illinois State University, Normal, Illinois

4. Musculoskeletal Research Center, University of Pittsburgh, Pittsburg, Pennsylvania

Abstract

Background: The anterior cruciate ligament (ACL) has been well defined as the main passive restraint to anterior tibial translation (ATT) in the knee and plays an important role in rotational stability. However, it is unknown how closely the ACL and other passive and active structures of the knee constrain translations and rotations across a set of functional activities of increasing demand on the quadriceps. Hypothesis: Anterior tibial translation and internal rotation of the tibia relative to the femur would increase as the demand on the quadriceps increased. Study Design: Controlled laboratory study. Methods: The in vivo 3-dimensional knee kinematics of 10 adult female patients (height, 167.8 ± 7.1 cm; body mass, 57 ± 4 kg; body mass index [BMI], 24.8 ± 1.7 kg/m2; age, 29.7 ± 7.9 years) was measured using biplane fluoroscopy while patients completed 4 functional tasks. The tasks included an unloaded knee extension in which the patient slowly extended the knee from 90° to 0° of flexion in 2 seconds; walking at a constant pace of 90 steps per minute; a maximum effort isometric knee extension with the knee at 70° of flexion; and landing from a height of 40 cm in which the patient stepped off a box, landed, and immediately performed a maximum effort vertical jump. Results: Landing (5.6 ± 1.9 mm) produced significantly greater peak ATT than walking (3.1 ± 2.2 mm) and unweighted full extension (2.6 ± 2.1 mm) ( P < .01), but there was no difference between landing and a maximum isometric contraction (5.0 ± 1.9 mm). While there was no significant difference in peak internal rotation between landing (19.4° ± 5.7°), maximum isometric contraction (15.9° ± 6.7°), and unweighted full knee extension (14.5° ± 7.7°), each produced significantly greater internal rotation than walking (3.9° ± 4.2°) ( P < .001). Knee extension torque significantly increased for each task ( P < .01): unweighted knee extension (4.7 ± 1.2 N·m), walking (36.5 ± 7.9 N·m), maximum isometric knee extension (105.1 ± 8.2 N·m), and landing (140.2 ± 26.2 N·m). Conclusion: Anterior tibial translations significantly increased as demand on the quadriceps and external loading increased. Internal rotation was not significantly different between landing, isometric contraction, and unweighted knee extension. Additionally, ATT and internal rotation from each motion were within the normal range, and no excessive amounts of translation or rotation were observed. Clinical Relevance: This study demonstrated that while ATT will increase as demand on the quadriceps and external loading increases, the knee is able to effectively constrain ATT and internal rotation. This suggests that the healthy knee has a safe envelope of function that is tightly controlled even though task demand is elevated.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3