Hedgehog Activation for Enhanced Rotator Cuff Tendon-to-Bone Healing

Author:

Luzzi Andrew J.1,Ferrer Xavier1,Fang Fei1,Golman Mikhail2,Song Lee1,Marshall Brittany P.2,Lee Andy J.2,Kim Jieon J.1,Hung Clark T.12,Thomopoulos Stavros12ORCID

Affiliation:

1. Department of Orthopaedic Surgery, Columbia University, New York, New York, USA

2. Department of Biomedical Engineering, Columbia University, New York, New York, USA

Abstract

Background: Rotator cuff repair is a common orthopaedic procedure, yet the rate of failure to heal after surgery is high. Repair site rupture is due to poor tendon-to-bone healing and lack of regeneration of the native fibrocartilaginous enthesis. During development, the enthesis is formed and mineralized by a pool of progenitors activated by hedgehog signaling. Furthermore, hedgehog signaling drives regenerative enthesis healing in young animals, in contrast to older animals, in which enthesis injuries heal via fibrovascular scar and without participation of hedgehog signaling. Hypothesis: Hedgehog activation improves tendon-to-bone healing in an animal model of rotator cuff repair. Study Design: Controlled laboratory study. Methods: A total of 78 adult Sprague-Dawley rats were used. Supraspinatus tendon injury and repair were completed bilaterally, with microsphere-encapsulated hedgehog agonist administered to right shoulders and control microspheres administered to left shoulders. Animals were sacrificed after 3, 14, 28, or 56 days. Gene expression and histological, biomechanical, and bone morphometric analyses were conducted. Results: At 3 days, hedgehog signaling pathway genes Gli1 (1.70; P = .029) and Smo (2.06; P = .0173), as well as Runx2 (1.69; P = .0386), a transcription factor of osteogenesis, were upregulated in treated relative to control repairs. At 14 days, transcription factors of tenogenesis, Scx (4.00; P = .041), and chondrogenesis, Sox9 (2.95; P = .010), and mineralized fibrocartilage genes Col2 (3.18; P = .031) and Colx (1.85; P = .006), were upregulated in treated relative to control repairs. Treatment promoted fibrocartilage formation at the healing interface by 28 days, with improvements in tendon-bone maturity, organization, and continuity. Treatment led to improved biomechanical properties. The material property strength (2.43 vs 1.89 N/m2; P = .046) and the structural property work to failure (29.01 vs 18.09 mJ; P = .030) were increased in treated relative to control repairs at 28 days and 56 days, respectively. Treatment had a marginal effect on bone morphometry underlying the repair. Trabecular thickness (0.08 vs 0.07 mm; P = .035) was increased at 28 days. Conclusion: Hedgehog agonist treatment activated hedgehog signaling at the tendon-to-bone repair site and prompted increased mineralized fibrocartilage production. This extracellular matrix production and mineralization resulted in improved biomechanical properties, demonstrating the therapeutic potential of hedgehog agonism for improving tendon-to-bone healing after rotator cuff repair. Clinical Relevance: This study demonstrates the therapeutic potential of hedgehog agonist treatment for improving tendon-to-bone healing after rotator cuff injury and repair.

Funder

National Institutes of Health

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3