Biomechanical Properties and Vascularity of an Anterior Cruciate Ligament Graft can be Predicted by Contrast-Enhanced Magnetic Resonance Imaging

Author:

Weiler Andreas1,Peters Gunnar1,Mäurer Jürgen2,Unterhauser Frank N.1,Südkamp Norbert P.1

Affiliation:

1. Trauma and Reconstructive Surgery, Sports Traumatology and Arthroscopy Service, Hunboldt-University of Berlin

2. Department of Radiology, Charité, Campus Virchow-Clinic, Humboldt-University of Berlin, Germany

Abstract

Magnetic resonance imaging has been used to determine graft integrity and study the remodeling process of anterior cruciate ligament grafts morphologically in humans. The goal of the present study was to compare graft signal intensity and morphologic characteristics on magnetic resonance imaging with biomechanical and histologic parameters in a long-term animal model. Thirty sheep underwent anterior cruciate ligament reconstruction with an autologous Achilles tendon split graft and were sacrificed after 6, 12, 24, 52, or 104 weeks. Before sacrifice, all animals underwent plain and contrast-enhanced (gadolinium-diethylenetriamine pentacetic acid) magnetic resonance imaging (1.5 T, proton density weighted, 2-mm sections) of their operated knees. The signal/noise quotient was calculated and data were correlated to the maximum load to failure, tensile strength, and stiffness of the grafts. The vascularity of the grafts was determined immunohistochemically by staining for endothelial cells (factor VIII). We found that high signal intensity on magnetic resonance imaging reflects a decrease of mechanical properties of the graft during early remodeling. Correlation analyses revealed significant negative linear correlations between the signal/noise quotient and the load to failure, stiffness, and tensile strength. In general, correlations for contrast-enhanced measurements of signal intensity were stronger than those for plain magnetic resonance imaging. Immunohistochemistry confirmed that contrast medium enhancement reflects the vascular status of the graft tissue during remodeling. We conclude that quantitatively determined magnetic resonance imaging signal intensity may be a useful tool for following the graft remodeling process in a noninvasive manner.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3