Up-regulation of Glutamate in Painful Human Supraspinatus Tendon Tears

Author:

Franklin Sarah L.1,Dean Benjamin J.F.1,Wheway Kim1,Watkins Bridget1,Javaid Muhammad K.1,Carr Andrew J.1

Affiliation:

1. Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK

Abstract

Background: Pain related to rotator cuff tendinopathy is a common problem, but little is known regarding the origin and cause of pain from the tendon substance. No study to date has looked at the association between tissue changes and patient outcomes. Purpose: To describe the peripheral neuronal phenotype in painful rotator cuff tears and to determine correlations between tissue changes and clinical outcome measures. Study Design: Controlled laboratory study. Methods: Tissue samples of the supraspinatus were taken from patients undergoing surgery to repair a rotator cuff tendon tear. Patients were classified as having small/medium or large/massive tears. Control tissue was obtained from patients undergoing surgery for posttraumatic shoulder instability. Immunohistochemical techniques were performed using antibodies to known nociceptive and neuronal markers as well as general tissue structural markers. Results: There was no correlation between tissue changes and patient-reported outcomes. A significant increase in the expression of glutamate was seen in tendon tears. There were differences in the expression of metabotropic and ionotropic glutamate receptors. Expression changes were also observed for markers of the sensory and autonomic systems; however, no differences were found in neurotrophins. Conclusion: Glutamate and the glutaminergic system play a key role in painful human tendon tears; however, the exact role is still uncertain, as glutamate is highly involved in both pain and metabolic pathways. Clinical Relevance: This study has identified a number of markers that could be potential therapeutic targets.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3