Biomechanical Evaluation of 3 Stabilization Methods on Acromioclavicular Joint Dislocations

Author:

Nüchtern Jakob V.1,Sellenschloh Kay2,Bishop Nick2,Jauch Sabrina2,Briem Daniel1,Hoffmann Michael1,Lehmann Wolfgang1,Pueschel Klaus3,Morlock Michael M.2,Rueger Johannes M.1,Großterlinden Lars G.1

Affiliation:

1. Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

2. Biomechanics Section, Hamburg University of Technology, Hamburg, Germany

3. Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Abstract

Background: Traumatic acromioclavicular (AC) joint dislocations can be addressed with several surgical stabilization techniques. The aim of this in vitro study was to evaluate biomechanical features of the native joint compared with 3 different stabilization methods: locking hook plate (HP), TightRope (TR), and bone anchor system (AS). Hypothesis: The HP provides higher stiffness than the anatomic reconstruction techniques. Study Design: Controlled laboratory study. Methods: A new biomechanical in vitro model of the AC joint was used to analyze joint stability after surgical repair (HP, TR, and AS). Eighteen cadaveric specimens were randomized for bone density and diameter in the midclavicle section. Joint stiffness was measured by applying an axial load and a defined physiological range of motion for internal and external rotations and upward and downward rotations. Data were recorded at 3 stages: for the native joint after dissecting the AC ligaments, directly after repair, and after axial cyclic loading (1000 cycles with 20 and 70 N at 1 Hz). To evaluate which implant mimics physiological joint properties best, axial stiffness of vertical stability was assessed in combination with rotation. Finally, static loading in the superior direction was applied until failure of the joints occurred. Results: Axial stiffness of the TR and AS groups was 2-fold higher than for the HP group and the native joint (67.1, 66.1, and 22.5 N/mm, respectively; P < .004). Decreased load-to-failure rates were recorded in the HP group compared with the TR and AS groups (248.9 ± 72.7, 832.0 ± 401.4, and 538.0 ± 166.1 N, respectively). The stiffness of the rotations was not significantly different between the treatment methods but was lower in horizontal and downward rotations compared with the native state. Thus, native AC ligaments contributed a significant share to joint stiffness. Conclusion: The TR and AS groups demonstrated higher vertical load capacity. Compared with the TR and AS, the HP demonstrated an axial stiffness closest to the native joint. For restoring physiological properties, reconstruction of the AC ligaments may be necessary. Clinical Relevance: The results show different biomechanical properties of the HP and anatomic reconstructions.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3