In Vitro Effects of Bupivacaine on the Viability and Mechanics of Native and Engineered Cartilage Grafts

Author:

Oyadomari Sarah1,Brown Wendy E.2,Kwon Heenam2,Otarola Gaston2,Link Jarrett M.2,Athanasiou Kyriacos A.2,Wang Dean13

Affiliation:

1. University of California Irvine School of Medicine, Irvine, California, USA

2. Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA

3. Department of Orthopaedic Surgery, University of California Irvine Health, Orange, California, USA

Abstract

Background: Although the toxic effects of bupivacaine on chondrocyte monolayer culture have been well described, its cellular and mechanical effects on native and engineered articular cartilage remain unclear. For the repair of articular cartilage defects, fresh autologous and allogenic cartilage grafts are commonly used, and engineered cell-based therapies are emerging. The outcome of grafting therapies aimed at repairing damaged cartilage relies largely on maintaining proper viability and mechanical suitability of the donor tissues. Purpose: To investigate the in vitro effects of single bupivacaine exposure on the viability and mechanics of 2 cartilage graft types: native articular cartilage and engineered neocartilage. Study Design: Controlled laboratory study. Methods: Articular cartilage explants were harvested from the bovine stifle femoral condyles, and neocartilage constructs were engineered from bovine stifle chondrocytes using the self-assembling process, a scaffold-free approach to engineer cartilage tissue. Both explants and neocartilage were exposed to chondrogenic medium containing a clinically applicable bolus of 0.5%, 0.25%, or 0% (control) bupivacaine for 1 hour, followed by fresh medium wash and exchange. Cell viability and matrix content (collagen and glycosaminoglycan) were assessed at t = 24 hours after treatment, and compressive mechanical properties were assessed with creep indentation testing at t = 5 to 6 days after treatment. Results: Single bupivacaine exposure was chondrotoxic in both explants and neocartilage, with 0.5% bupivacaine causing a significant decrease in chondrocyte viability compared with the control condition (55.0% ± 13.4% vs 71.9% ± 13.5%; P < .001). Bupivacaine had no significant effect on matrix content for either tissue type. There was significant weakening of the mechanical properties in the neocartilage when treated with 0.5% bupivacaine compared with control, with decreased aggregate modulus (415.8 ± 155.1 vs 660.3 ± 145.8 kPa; P = .003), decreased shear modulus (143.2 ± 14.0 vs 266.5 ± 89.2 kPa; P = .002), and increased permeability (14.7 ± 8.1 vs 6.6 ± 1.7 × 10−15 m4/Ns; P = .009). Bupivacaine exposure did not have a significant effect on the mechanical properties of native cartilage explants. Conclusion: Single bupivacaine exposure resulted in significant chondrotoxicity in native explants and neocartilage and significant weakening of mechanical properties of neocartilage. The presence of abundant extracellular matrix does not appear to confer any additional resistance to the toxic effects of bupivacaine. Clinical Relevance: Clinicians should be judicious regarding the use of intra-articular bupivacaine in the setting of articular cartilage repair.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3