Evaluation of the Potential of Umbilical Cord Mesenchymal Stromal Cell–Derived Small Extracellular Vesicles to Improve Rotator Cuff Healing: A Pilot Ovine Study

Author:

Jenner Florien12,Wagner Andrea32,Gerner Iris12,Ludewig Eberhard4,Trujanovic Robert5,Rohde Eva67,von Rechenberg Brigitte89,Gimona Mario710,Traweger Andreas32

Affiliation:

1. VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria

2. Austrian Cluster for Tissue Regeneration, Vienna, Austria

3. Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria

4. Diagnostic Imaging Unit, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria

5. Clinical Unit of Anaesthesiology and Perioperative Intensive Care, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria

6. Department of Transfusion Medicine, Salzburger Landeskliniken GesmbH, Paracelsus Medical University, Salzburg, Austria

7. GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria

8. Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland

9. Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland

10. Research Program “Nanovesicular Therapies,” Paracelsus Medical University, Salzburg, Austria

Abstract

Background: Despite significant advancements in surgical techniques to repair rotator cuff (RC) injuries, failure rates remain high and novel approaches to adequately overcome the natural biological limits of tendon and enthesis regeneration of the RC are required. Small extracellular vesicles (sEVs) derived from the secretome of human multipotent mesenchymal stromal cells (MSCs) have been demonstrated to modulate inflammation and reduce fibrotic adhesions, and therefore their local application could improve outcomes after RC repair. Purpose: In this pilot study, we evaluated the efficacy of clinical-grade human umbilical cord (hUC) MSC-derived sEVs (hUC-MSC-sEVs) loaded onto a type 1 collagen scaffold in an ovine model of acute infraspinatus tendon injury to improve RC healing. Study Design: Controlled laboratory study. Methods: sEVs were enriched from hUC-MSC culture media and were characterized by surface marker profiling. The immunomodulatory capacity was evaluated in vitro by T-cell proliferation assays, and particle count was determined by nanoparticle tracking analysis. Twelve skeletally mature sheep were subjected to partial infraspinatus tenotomy and enthesis debridement. The defects of 6 animals were treated with 2 × 1010 hUC-MSC-sEVs loaded onto a type 1 collagen sponge, whereas 6 animals received only a collagen sponge, serving as controls. Six weeks postoperatively, the healing of the infraspinatus tendon and the enthesis was evaluated by magnetic resonance imaging (MRI) and hard tissue histology. Results: CD3/CD28-stimulated T-cell proliferation was significantly inhibited by hUC-MSC-sEVs ( P = .015) that displayed the typical surface marker profile, including the presence of the MSC marker proteins CD44 and melanoma-associated chondroitin sulfate proteoglycan. The local application of hUC-MSC-sEVs did not result in any marked systemic adverse events. Histologically, significantly improved Watkins scores ( P = .031) indicated improved tendon and tendon-to-bone insertion repair after sEV treatment and lower postcontrast signal of the tendon and adjacent structures on MRI suggested less residual inflammation at the defect area. Furthermore, the formation of osteophytes at the injury site was significantly attenuated ( P = .037). Conclusion: A local, single-dose application of hUC-MSC-sEVs promoted tendon and enthesis healing in an ovine model of acute RC injury. Clinical Relevance: Surgical repair of RC tears generally results in a clinical benefit for the patient; however, considerable rerupture rates have been reported. sEVs have potential as a cell-free biotherapeutic to improve healing outcomes after RC injury.

Funder

österreichische agentur für internationale mobilität und kooperation in bildung, wissenschaft und forschung

Salzburger Landesregierung

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3