Affiliation:
1. Washington University School of Medicine, St Louis, Missouri, USA
2. Hyogo Rehabilitation Center, Kobe, Japan
Abstract
Background: Femoroacetabular impingement (FAI) is a leading cause of hip pain in young adults and often leads to degenerative osteoarthritis (OA). A small animal model of hip deformities is crucial for unraveling the pathophysiology of hip OA secondary to FAI. Purposes: To (1) characterize a new minimally invasive surgical technique to create a proximal femoral head–neck deformity in a skeletally immature rabbit model and (2) document the effect of an injury to the medial proximal femoral epiphysis on head–neck morphology at 28 days after the injury. Study Design: Controlled laboratory study. Methods: Six-week-old New Zealand White rabbits (n = 10) were subjected to right hip surgery, with the left hip used as a control. An epiphyseal injury in the medial femoral head was created using a 1.6-mm drill. Hips were harvested bilaterally at 28 days after surgery. Alpha and epiphyseal shaft angles were measured on radiographs. Alpha angles at the 1- and 3-o’clock positions were measured on the oblique axial plane of micro–computed tomography images. Bone bar formation secondary to growth plate injuries was confirmed using alcian blue hematoxylin staining. Results: All hips in the study group showed a varus–type head-neck deformity, with lower epiphyseal shaft angles on anteroposterior radiographs versus those in the control group (133°± 8° vs 142°± 5°, respectively; P = .022) and higher epiphyseal shaft angles on lateral radiographs (27°± 12° vs 10°± 7°, respectively; P < .001). The mean alpha angles in the study group were higher at both the 1- (103°± 14° vs 46°± 7°, respectively; P < .002) and 3-o’clock (99°± 18° vs 35°± 11°, respectively; P < .002) positions than those in the control group. Alcian blue hematoxylin staining of all hips in the study group indicated that the injured physis developed a bony bar, leading to growth plate arrest on the medial femoral head. Conclusion: The proposed model led to growth arrest at the proximal femoral physis, resulting in a femoral head–neck deformity similar to human FAI. Clinical Relevance: Our novel small animal model of a femoral head–neck deformity is a potential platform for research into the basic mechanisms of FAI disease progression and the development of disease–modifying therapies.
Funder
national institutes of health
Orthopedic Research and Education Foundation
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献