Affiliation:
1. Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
Abstract
Background:Open physes and trochlear/notch geometries in pediatric patients limit the safe corridor for femoral interference screw graft fixation during medial patellofemoral ligament (MPFL) reconstruction. Accordingly, interest is increasing in anchor-based fixation, but biomechanical validation is deficient.Purpose:To compare anchor-based and tenodesis screw femoral fixation of MPFL grafts in a time-zero biomechanical model.Study Design:Controlled laboratory study.Methods:Twenty-seven fresh-frozen porcine distal femurs were potted for testing in an electromechanical load frame, while bovine tendons were used for MPFL grafts. Reconstructions were performed with 1 of 3 femoral fixation strategies: 4.5-mm biocomposite double-loaded threaded anchor (DLA group), 3.9-mm biocomposite knotless threaded anchor (KA group), or traditional 7 × 23–mm biocomposite tenodesis screw (TS group). For testing, femoral specimens were oriented and secured in the mechanical testing apparatus such that actuator tensile pull re-created the normal MPFL trajectory. Specimens underwent 10 cycles of 5- to 15-N loading at 1-Hz preconditioning, followed by 1000 cycles of 10- to 50 N-loading at 1 Hz. After cyclic loading, all specimens were loaded to failure at 305 mm/min. The average cyclic construct stiffness, displacement, and load-to-failure data between the 3 groups were compared using analysis of variance (ANOVA) with the significance level set at P < .05.Results:Average cyclic construct stiffnesses were comparable across groups per repeated-measures ANOVA analysis: 68.3 ± 6.3, 71.4 ± 6.4, and 74.3 ± 7.9 N/mm for TS, DLA, and KA groups, respectively (at cycle 1000). Average construct displacements at cycles 100 and 1000 were significantly less in the anchor versus tenodesis screw groups per ANOVA and Tukey post hoc analysis: 7.7 ± 4.2 mm for the TS group versus 3.7 ± 0.4 and 4.3 ± 0.6 mm for the DLA and KA groups, respectively (at cycle 1000). There was no significant difference in ultimate failure loads between the anchor and tenodesis screw groups, but 3 of 9 TS constructs failed at loads below the average failure load of the native MPFL.Conclusion:Compared with the tenodesis group, anchor-based fixation produced constructs with equivalent cyclic stiffnesses, improved load-displacement characteristics, and had less failure load variability in the porcine cadaveric model.Clinical Relevance:Femoral fixation of the MPFL graft with a single anchor (4.5 or 3.9 mm threaded) is a viable alternative to traditional tenodesis screw fixation.
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine