Biomechanical Evaluation of the Medial Stabilizers of the Patella

Author:

LaPrade Matthew D.1,Kallenbach Samantha L.1,Aman Zachary S.1,Moatshe Gilbert123,Storaci Hunter W.1,Turnbull Travis Lee1,Arendt Elizabeth A.4,Chahla Jorge1,LaPrade Robert F.15

Affiliation:

1. Steadman Philippon Research Institute, Vail, Colorado, USA

2. Oslo University Hospital and University of Oslo, Oslo, Norway

3. Norwegian School of Sports Sciences, Oslo Sports Trauma Research Center, Oslo, Norway

4. Department of Orthopaedic Surgery, University of Minnesota Minneapolis, Minnesota, USA

5. The Steadman Clinic, Vail, Colorado, USA

Abstract

Background: Quantification of the biomechanical properties of each individual medial patellar ligament will facilitate an understanding of injury patterns and enhance anatomic reconstruction techniques by improving the selection of grafts possessing appropriate biomechanical properties for each ligament. Purpose: To determine the ultimate failure load, stiffness, and mechanism of failure of the medial patellofemoral ligament (MPFL), medial patellotibial ligament (MPTL), and medial patellomeniscal ligament (MPML) to assist with selection of graft tissue for anatomic reconstructions. Study Design: Descriptive laboratory study. Methods: Twenty-two nonpaired, fresh-frozen cadaveric knees were dissected free of all soft tissue structures except for the MPFL, MPTL, and MPML. Two specimens were ultimately excluded because their medial structure fibers were lacerated during dissection. The patella was obliquely cut to test the MPFL and the MPTL-MPML complex separately. To ensure that the common patellar insertion of the MPTL and MPML was not compromised during testing, only one each of the MPML and MPTL were tested per specimen (n = 10 each). Specimens were secured in a dynamic tensile testing machine, and the ultimate load, stiffness, and mechanism of failure of each ligament (MPFL = 20, MPML = 10, and MPTL = 10) were recorded. Results: The mean ± SD ultimate load of the MPFL (178 ± 46 N) was not significantly greater than that of the MPTL (147 ± 80 N; P = .706) but was significantly greater than that of the MPML (105 ± 62 N; P = .001). The mean ultimate load of the MPTL was not significantly different from that of the MPML ( P = .210). Of the 20 MPFLs tested, 16 failed by midsubstance rupture and 4 by bony avulsion on the femur. Of the 10 MPTLs tested, 9 failed by midsubstance rupture and 1 by bony avulsion on the patella. Finally, of the 10 MPMLs tested, all 10 failed by midsubstance rupture. No significant difference was found in mean stiffness between the MPFL (23 ± 6 N/mm2) and the MPTL (31 ± 21 N/mm2; P = .169), but a significant difference was found between the MPFL and the MPML (14 ± 8 N/mm2; P = .003) and between the MPTL and MPML ( P = .028). Conclusion: The MPFL and MPTL had comparable ultimate loads and stiffness, while the MPML had lower failure loads and stiffness. Midsubstance failure was the most common type of failure; therefore, reconstruction grafts should meet or exceed the values reported herein. Clinical Relevance: For an anatomic medial-sided knee reconstruction, the individual biomechanical contributions of the medial patellar ligamentous structures (MPFL, MPTL, and MPML) need to be characterized to facilitate an optimal reconstruction design.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3