Characterizing Bone Tunnel Placement in Medial Ulnar Collateral Ligament Reconstruction Using Patient-Specific 3-Dimensional Computed Tomography Modeling

Author:

Byram Ian R.1,Khanna Krishn2,Gardner Thomas R.2,Ahmad Christopher S.23

Affiliation:

1. Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee

2. Department of Orthopaedic Surgery, New York–Presbyterian Hospital, Columbia University Medical Center, New York, New York

3. Center for Shoulder, Elbow and Sports Medicine, New York–Presbyterian Hospital, Columbia University Medical Center, New York, New York

Abstract

Background: Medial ulnar collateral ligament (MUCL) reconstruction is successful in restoring valgus elbow stability, but variability in bone tunnel characteristics exists among surgical techniques. Hypothesis: Tunnel parameters such as diameter, drill angle, and starting location in MUCL reconstruction affect tunnel length and bone bridge size between tunnels. Study Design: Descriptive laboratory study. Methods: Three-dimensional models were created from elbow computed tomography scans of 10 throwing athletes and analyzed using Mimics (Materialise) software. The MUCL reconstructions were simulated on each elbow with 3 techniques: Jobe, humeral docking, and DANE TJ. Humeral central tunnels were modified by diameter, medial-lateral epicondylar starting point, and angle with respect to the humeral axis. Ulnar tunnels were varied by diameter and angle with respect to the ulnar axis. Humeral tunnel length, humeral and ulnar bone bridge sizes, and ulnar tunnel aperture and distance from the articular surface of the olecranon were measured. Comparisons were made using 1- and 2-way analysis of variance and Student-Newman-Keuls multiple comparison tests. Results: Mean central humeral tunnel length varied significantly by starting point and angulation of the tunnel both in sagittal and coronal planes, ranging from 14.2 ± 2.3 mm to 25.5 ± 4.3 mm ( P < .05). Mean bone bridge size between humeral exit tunnels ranged from 9.0 ± 2.5 mm to 15.1 ± 3.1 mm, varying by central humeral tunnel orientation and exit tunnel diameter ( P < .05). Bone bridge size between ulnar tunnels with the Jobe and docking techniques averaged 6.7 ± 0.9 mm (3.2-mm tunnels) and 6.4 ± 0.8 mm (3.5-mm tunnels), respectively. Angle of ulnar tunnels affected distance from the articular surface with the Jobe and docking techniques ( P < .0001) and affected tunnel aperture size with the interference screw technique ( P < .0001). Conclusion: Humeral and ulnar tunnel angles, starting points, and diameters affect tunnel length, distance from the articular surface, and bone bridge size in MUCL reconstructions. Maximal humeral tunnel length is achieved by starting central or lateral to the midpoint of the epicondyle, angulated 30° to the humeral axis in the sagittal plane and 15° in the coronal plane. A reasonable goal tunnel depth should range from 15 to 20 mm. Ulnar tunnels should be placed on the anterior and posterior aspects of the sublime tubercle, directed away from the joint to minimize the likelihood of breaching the articular cartilage. A bone bridge of 6 to 8 mm between these tunnels can be reasonably achieved. Tunnels with the ulnar interference screw fixation technique should also be directed away from the joint but at an angle more perpendicular than 45° to minimize tunnel aperture size. Regardless of angle of the tunnel drilled for the ulnar interference screw employed in the DANE TJ technique, the tunnel length is sufficient to fully contain a 15-mm screw. Clinical Relevance: Computer models can guide MUCL reconstruction technique by indicating tunnel placement for maximizing the bone bridge and tunnel length.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3