Repair of a Meniscal Defect in a Rabbit Model Through Use of a Thermosensitive, Injectable, In Situ Crosslinked Hydrogel With Encapsulated Bone Mesenchymal Stromal Cells and Transforming Growth Factor β1

Author:

Chen Chen12,Song Jialin3,Qiu Jiayu1,Zhao Jinzhong1

Affiliation:

1. Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

2. State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China

3. The Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

Abstract

Background: Meniscal injury repair with tissue engineering technique is promising. Among various scaffolds, the thermosensitive injectable hydrogel has recently attracted much attention. Purpose: (1) Evaluate the biocompatibility of thermosensitive, injectable, in situ crosslinked hydrogel and (2) determine whether the hydrogel with or without transforming growth factor β1 (TGF-β1) could support the fibrochondrogenic differentiation of bone mesenchymal stromal cells (BMSCs) and promote the repair of a critical-sized defect in rabbit meniscus. Study Design: Controlled laboratory study. Methods: The rheological and sustained release properties of the hydrogel were demonstrated. BMSCs were isolated and cultured. Cell viability, quantitative polymerase chain reaction (qPCR), and Western blot were tested in vitro. In vivo, a critical-sized defect was introduced into the meniscus of 30 rabbits. Each defect was randomly assigned to be implanted with either phosphate-buffered saline (PBS); BMSC-laden hydrogel; or BMSC-laden, TGF-β1-incorporated hydrogel. Histological and immunohistochemical analyses were performed at 8 weeks after surgery. The Ishida scoring system was adopted to evaluate the healing quantitatively. Results: The elastic modulus of the hydrogel was about 1000 Pa. The hydrogel demonstrated a sustained-release property and could promote proliferation and induce fibrochondrogenic differentiation of BMSCs after the incorporation of TGF-β1 ( P < .001). At 8 weeks after surgery, a large amount of fibrocartilaginous tissue, which was positive on safranin-O staining and expressed strong type II collagen intermingled with weak type I collagen, was observed in the defect region of the BMSC-laden, TGF-β1-incorporated hydrogel group. In the BMSC-laden hydrogel group, the defect was filled with fibrous tissue together with a small amount of fibrocartilage. The mean ± SD quantitative scores obtained for the 3 groups—PBS; BMSC-laden hydrogel; and BMSC-laden, TGF-β1-incorporated hydrogel—were 1.00, 3.20 ± 0.84, and 5.00 ± 0.71, respectively ( P < .001). Conclusion: The hydrogel was biocompatible and could stimulate strong fibrochondrogenic differentiation of BMSCs after the incorporation of TGF-β1. The local administration of the BMSC-laden, TGF-β1-incorporated hydrogel could promote the healing of rabbit meniscal injury. Clinical Relevance: This hydrogel is an alternative scaffold for meniscus tissue engineering.

Funder

Foundation of Shanghai Municipal Administration of Sports

state key laboratory of molecular engineering of polymers

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3