Anatomic Predictors of Sagittal Hip and Pelvic Motions in Patients With a Cam Deformity

Author:

Ng K.C. Geoffrey12,Lamontagne Mario2345,Jeffers Jonathan R.T.1,Grammatopoulos George6,Beaulé Paul E.5

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London, UK

2. Human Movement Biomechanics Laboratory, University of Ottawa, Ontario, Canada

3. School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada

4. Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada

5. Division of Orthopaedic Surgery, University of Ottawa, Ottawa, Ontario, Canada

6. Department of Orthopaedics and Trauma, University College London Hospitals NHS Trusts, London, UK

Abstract

Background: As there is a high prevalence of patients with cam deformities and no ongoing hip dysfunction, understanding the biomechanical factors predicting the onset of symptoms and degenerative changes is critical. One such variable is how the spinopelvic parameters may influence hip and pelvic sagittal mobility. Hypothesis/Purpose: Pelvic incidence may predict sagittal hip and pelvic motions during walking and squatting. The purpose was to determine which anatomic characteristics were associated with symptoms and how they influenced functional hip and pelvic ranges of motion (ROMs) during walking and squatting. Study Design: Controlled laboratory study. Methods: Fifty-seven participants underwent computed tomography and were designated either symptomatic (n = 19, cam deformity with pain), asymptomatic (n = 19, cam deformity with no pain), or control (n = 19, no cam deformity or pain). Multiple femoral (cam deformity, neck angle, torsion), acetabular (version, coverage), and spinopelvic (pelvic tilt, sacral slope, pelvic incidence) parameters were measured from each participant’s imaging data, and sagittal hip and pelvic ROMs during walking and squatting were recorded using a motion capture system. Results: Symptomatic participants had large cam deformities, smaller femoral neck-shaft angles, and larger pelvic incidence angles compared with the asymptomatic and control participants. Discriminant function analyses confirmed that radial 1:30 alpha angle (λ1 = 0.386), femoral neck-shaft angle (λ2 = 0.262), and pelvic incidence (λ3 = 0.213) ( P < .001) were the best anatomic parameters to classify participants with their groups. Entering these 3 parameters into a hierarchical linear regression, significant regressions were achieved for hip ROM only when pelvic incidence was included for walking ( R2 = 0.20, P = .01) and squatting ( R2 = 0.14, P = .04). A higher pelvic incidence decreased walking hip ROM ( r = −0.402, P = .004). Although symptomatic participants indicated a trend of reduced squatting hip and pelvic ROMs, there were no significant regressions with the anatomic parameters. Conclusion: A cam deformity alone may not indicate early clinical signs or decreased ROM. Not only was pelvic incidence a significant parameter to classify the participants, but it was also an important parameter to predict functional ROM. Symptomatic patients with a higher pelvic incidence may experience limited sagittal hip mobility. Clinical Relevance: Patients with symptomatic femoroacetabular impingement showed a higher pelvic incidence and, combined with a cam deformity and varus neck, can perhaps alter the musculature of their iliopsoas, contributing to a reduced sagittal ROM. With an early and accurate clinical diagnosis, athletes could benefit from a muscle training strategy to protect their hips.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3