Lateral Meniscal Graft Transplantation: Effect of Fixation Method on Joint Contact Mechanics During Simulated Gait

Author:

Brial Caroline1,McCarthy Moira2,Adebayo Olufunmilayo1,Wang Hongsheng3,Chen Tony13,Warren Russell23,Maher Suzanne13

Affiliation:

1. Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA

2. Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA

3. Orthopaedic Soft Tissue Research Program, Research Institute, Hospital for Special Surgery, New York, New York, USA

Abstract

Background: Controversy exists regarding the optimal bony fixation technique for lateral meniscal allografts. Purpose/Hypothesis: The objective was to quantify knee joint contact mechanics across the lateral plateau for keyhole and bone plug meniscal allograft transplant fixation techniques throughout simulated gait. It was hypothesized that both methods of fixation would improve contact mechanics relative to the meniscectomized condition, while keyhole fixation would restore the distribution of contact stress closer to that of the intact knee. Study Design: Controlled laboratory study. Methods: Six human cadaveric knees were mounted on a multidirectional dynamic simulator and subjected to the following conditions: (1) native intact meniscus, (2) keyhole fixation of the native meniscus, (3) bone plug fixation of the native meniscus, and (4) meniscectomy. Contact area, peak contact stress, and the distribution of stress across the tibial plateau were computed at 14% and 45% of the gait cycle, at which axial forces are at their highest. Translation of the weighted center of contact stress throughout simulated gait was computed. Results: Both bony fixation techniques improved contact mechanics relative to the meniscectomized condition. The keyhole technique was not significantly different from the intact condition for the following metrics: contact area, peak contact stress, distribution of force between the meniscal footprint and cartilage-to-cartilage contact, and the position of the weighted center of contact. In contrast, bone plug fixation resulted in a significant decrease of 21% to 28% in contact area at 14% and 45% of the simulated gait cycle, a significant increase in peak contact stresses of 34% at 45% of the gait cycle, and a shift in the weighted center of contact, which increased forces in the cartilage-to-cartilage contact area at 45% of the gait cycle. Conclusion: While both keyhole and bone plug fixation methods improved lateral compartment contact mechanics relative to the meniscectomized knee, keyhole fixation restored contact mechanics closer to that of the intact knee. Clinical Relevance: Method of meniscal fixation is under the direct control of the surgeon. From a biomechanics perspective, keyhole fixation is advocated for its ability to mimic intact knee joint contact mechanics.

Funder

national institute of arthritis and musculoskeletal and skin diseases

Russell Warren Chair in Tissue Engineering

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3