Fluoroquinolones Impair Tendon Healing in a Rat Rotator Cuff Repair Model

Author:

Fox Alice J.S.1,Schär Michael O.1,Wanivenhaus Florian1,Chen Tony2,Attia Erik1,Binder Nikolaus B.1,Otero Miguel1,Gilbert Susannah L.3,Nguyen Joseph T.4,Chaudhury Salma1,Warren Russell F.1,Rodeo Scott A.1

Affiliation:

1. Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, New York, USA

2. Laboratory for Soft Tissue Research, Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA

3. Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA

4. Healthcare Research Institute, Hospital for Special Surgery, New York, New York, USA

Abstract

Background: Recent studies suggest that fluoroquinolone antibiotics predispose tendons to tendinopathy and/or rupture. However, no investigations on the reparative capacity of tendons exposed to fluoroquinolones have been conducted. Hypothesis: Fluoroquinolone-treated animals will have inferior biochemical, histological, and biomechanical properties at the healing tendon-bone enthesis compared with controls. Study Design: Controlled laboratory study. Methods: Ninety-two rats underwent rotator cuff repair and were randomly assigned to 1 of 4 groups: (1) preoperative (Preop), whereby animals received fleroxacin for 1 week preoperatively; (2) pre- and postoperative (Pre/Postop), whereby animals received fleroxacin for 1 week preoperatively and for 2 weeks postoperatively; (3) postoperative (Postop), whereby animals received fleroxacin for 2 weeks postoperatively; and (4) control, whereby animals received vehicle for 1 week preoperatively and for 2 weeks postoperatively. Rats were euthanized at 2 weeks postoperatively for biochemical, histological, and biomechanical analysis. All data were expressed as mean ± standard error of the mean (SEM). Statistical comparisons were performed using either 1-way or 2-way ANOVA, with P < .05 considered significant. Results: Reverse transcriptase quantitative polymerase chain reaction (RTqPCR) analysis revealed a 30-fold increase in expression of matrix metalloproteinase (MMP)-3, a 7-fold increase in MMP-13, and a 4-fold increase in tissue inhibitor of metalloproteinases (TIMP)-1 in the Pre/Postop group compared with the other groups. The appearance of the healing enthesis in all treated animals was qualitatively different than that in controls. The tendons were friable and atrophic. All 3 treated groups showed significantly less fibrocartilage and poorly organized collagen at the healing enthesis compared with control animals. There was a significant difference in the mode of failure, with treated animals demonstrating an intrasubstance failure of the supraspinatus tendon during testing. In contrast, only 1 of 10 control samples failed within the tendon substance. The healing enthesis of the Pre/Postop group displayed significantly reduced ultimate load to failure compared with the Preop, Postop, and control groups. There was no significant difference in load to failure in the Preop group compared with the Postop group. Pre/Postop animals demonstrated significantly reduced cross-sectional area compared with the Postop and control groups. There was also a significant reduction in area between the Preop and control groups. Conclusion: In this preliminary study, fluoroquinolone treatment negatively influenced tendon healing. Clinical Relevance: These findings indicate that there was an active but inadequate repair response that has potential clinical implications for patients who are exposed to fluoroquinolones before tendon repair surgery.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3