Advanced Age Diminishes Tendon-to-Bone Healing in a Rat Model of Rotator Cuff Repair

Author:

Plate Johannes F.12,Brown Philip J.3,Walters Jordan1,Clark John A.3,Smith Thomas L.1,Freehill Michael T.1,Tuohy Christopher J.1,Stitzel Joel D.34,Mannava Sandeep12

Affiliation:

1. Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA

2. The Neuroscience Program, Wake Forest University Graduate School of Arts and Sciences, Winston-Salem, NC, USA

3. Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA

4. School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, NC, USA

Abstract

Background: Advanced patient age is associated with recurrent tearing and failure of rotator cuff repairs clinically; however, basic science studies have not evaluated the influence of aging on tendon-to-bone healing after rotator cuff repair in an animal model. Hypothesis/Purpose: This study examined the effect of aging on tendon-to-bone healing in an established rat model of rotator cuff repair using the aged animal colony from the National Institute on Aging of the National Institutes of Health. The authors hypothesized that normal aging decreases biomechanical strength and histologic organization at the tendon-to-bone junction after acute repair. Study Design: Controlled laboratory study. Methods: In 56 F344xBN rats, 28 old and 28 young (24 and 8 months of age, respectively), the supraspinatus tendon was transected and repaired. At 2 or 8 weeks after surgery, shoulder specimens underwent biomechanical testing to compare load-to-failure and load-relaxation response between age groups. Histologic sections of the tendon-to-bone interface were assessed with hematoxylin and eosin staining, and collagen fiber organization was assessed by semiquantitative analysis of picrosirius red birefringence under polarized light. Results: Peak failure load was similar between young and old animals at 2 weeks after repair (31% vs 26% of age-matched uninjured controls, respectively; P > .05) but significantly higher in young animals compared with old animals 8 weeks after repair (86% vs 65% of age-matched uninjured controls, respectively; P < .01). Eight weeks after repair, fibroblasts appeared more organized and uniformly aligned in young animals on hematoxylin and eosin slides compared with old animals. Collagen birefringence analysis of the tendon-to-bone junction demonstrated that young animals had increased collagen fiber organization and similar histologic structure compared with age-matched controls (53.7 ± 2.4 gray scales; P > .05). In contrast, old animals had decreased collagen fiber organization and altered structure compared with age-matched controls (49.8 ± 3.1 gray scales; P < .01). Discussion: In a rat model of aging, old animals demonstrated diminished tendon-to-bone healing after rotator cuff injury and repair. Old animals had significantly decreased failure strength and collagen fiber organization at the tendon-to-bone junction compared with young animals. This study implies that animal age may need to be considered in future studies of rotator cuff repair in animal models. Clinical Relevance: With increasing age and activity level of the population, the incidence of rotator cuff tears is predicted to rise. Despite advances in rotator cuff repair technique, the retear rate remains specifically high in elderly patients. The findings of this research suggest that aging negatively influences tendon-to-bone healing after rotator cuff repair in a validated animal model.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3