Articular Cartilage Repair After Implantation of Hyaline Cartilage Beads Engineered From Adult Dedifferentiated Chondrocytes: Cartibeads Preclinical Efficacy Study in a Large Animal Model

Author:

Kutaish Halah12,Tscholl Philippe Matthias32,Cosset Erika42,Bengtsson Laura52,Braunersreuther Vincent62,Mor Flavio Maurizio72,Laedermann Jeremy82,Furfaro Ivan92,Stafylakis Dimitrios32,Hannouche Didier102,Gerstel Eric112,Krause Karl-Heinz122,Assal Mathieu132,Menetrey Jacques142,Tieng Vannary52

Affiliation:

1. Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland. University Medical Center, University of Geneva, Geneva, Switzerland. Foot and Ankle Surgery Centre, Centre Assal, Clinique La Colline, Hirslanden Geneva, Switzerland

2. Investigation performed at the Faculty of Medicine, University of Geneva, in collaboration with Geneva University Hospitals, Geneva, Switzerland

3. Department of Orthopaedics Surgery, Geneva University Hospitals, Geneva, Switzerland

4. University Medical Center, University of Geneva, Geneva, Switzerland. Laboratory of Tumor Immunology, Oncology Department, Center for Translational Research in Onco- Hematology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland

5. University Medical Center, University of Geneva, Geneva, Switzerland. Vanarix SA, Lausanne, Switzerland

6. Service of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland

7. Tissue Engineering Laboratory, HEPIA/HES-SO, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland

8. Wyss Center for Bio and Neuroengineering, Geneva, Switzerland

9. Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédeérale de Lausanne (EPFL), Switzerland

10. University Medical Center, University of Geneva, Geneva, Switzerland. Department of Orthopaedics Surgery, Geneva University Hospitals, Geneva, Switzerland

11. University Medical Center, University of Geneva, Geneva, Switzerland. Clinique la Colline, Hirslanden, Geneva, Switzerland

12. Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland. University Medical Center, University of Geneva, Geneva, Switzerland

13. University Medical Center, University of Geneva, Geneva, Switzerland. Foot and Ankle Surgery Centre, Centre Assal, Clinique La Colline, Hirslanden Geneva, Switzerland

14. University Medical Center, University of Geneva, Geneva, Switzerland. Centre for Sports Medicine and Exercise, Clinique la Colline, Hirslanden, Geneva, Switzerland

Abstract

Background: Chondrocyte-based cell therapy to repair cartilage has been used for >25 years despite current limitations. This work presents a new treatment option for cartilage lesions. Hypothesis: High-quality hyaline cartilage microtissues called Cartibeads are capable of treating focal chondral lesions once implanted in the defect, by complete fusion of Cartibeads among themselves and their integration with the surrounding native cartilage and subchondral bone. Study Design: Controlled laboratory study. Methods: Cartibeads were first produced from human donors and characterized using histology (safranin O staining of glycosaminoglycan [GAG] and immunohistochemistry of collagen I and II) and GAG dosage. Cartibeads from 6 Göttingen minipigs were engineered and implanted in an autologous condition in the knee (4 or 5 lesions per knee). One group was followed up for 3 months and the other for 6 months. Feasibility and efficacy were measured using histological analysis and macroscopic and microscopic scores. Results: Cartibeads revealed hyaline features with strong staining of GAG and collagen II. High GAG content was obtained: 24.6-µg/mg tissue (wet weight), 15.52-µg/mg tissue (dry weight), and 35 ± 3-µg GAG/bead (mean ± SD). Histological analysis of Göttingen minipigs showed good integration of Cartibeads grafts at 3 and 6 months after implantation. The Bern Score of the histological assay comparing grafted versus empty lesions was significant at 3 months (grafted, n = 10; nongrafted, n = 4; score, 3.3 and 5.3, respectively) and 6 months (grafted, n = 11; nongrafted, n = 3; score, 1.6 and 5.1). Conclusion: We developed an innovative 3-step method allowing, for the first time, the use of fully dedifferentiated adult chondrocytes with a high number of cell passage (owing to the extensive amplification in culture). Cartibeads engineered from chondrocytes hold potential as an advanced therapy medicinal product for treating cartilage lesions with established efficacy. Clinical Relevance: This successful preclinical study, combined with standardized manufacturing of Cartibeads according to good manufacturing practice guidelines, led to the approval of first-in-human clinical trial by the ethics committee and local medical authority. The generated data highlighted a promising therapy to treat cartilage lesions from a small amount of starting biopsy specimen. With our innovative cell amplification technology, very large lesions can be treated, and older active patients can benefit from it.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3