rAAV-Mediated sox9 Overexpression Improves the Repair of Osteochondral Defects in a Clinically Relevant Large Animal Model Over Time In Vivo and Reduces Perifocal Osteoarthritic Changes

Author:

Lange Cliff1,Madry Henning1,Venkatesan Jagadeesh K.1,Schmitt Gertrud1,Speicher-Mentges Susanne1,Zurakowski David2,Menger Michael D.3,Laschke Matthias W.3,Cucchiarini Magali1

Affiliation:

1. Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany

2. Departments of Anesthesia and Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

3. Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany

Abstract

Background: Gene transfer of the transcription factor SOX9 with clinically adapted recombinant adeno-associated virus (rAAV) vectors offers a powerful tool to durably enhance the repair process at sites of osteochondral injuries and counteract the development of perifocal osteoarthritis (OA) in the adjacent articular cartilage. Purpose: To examine the ability of an rAAV sox9 construct to improve the repair of focal osteochondral defects and oppose perifocal OA development over time in a large translational model relative to control gene transfer. Study Design: Controlled laboratory study. Methods: Standardized osteochondral defects created in the knee joints of adult sheep were treated with rAAV-FLAG-h sox9 relative to control (reporter) rAAV- lacZ gene transfer. Osteochondral repair and degenerative changes in the adjacent cartilage were monitored using macroscopic, histological, immunohistological, and biochemical evaluations after 6 months. The microarchitecture of the subchondral bone was assessed by micro–computed tomography. Results: Effective, prolonged sox9 overexpression via rAAV was significantly achieved in the defects after 6 months versus rAAV- lacZ treatment. The application of rAAV-FLAG-h sox9 improved the individual parameters of defect filling, matrix staining, cellular morphology, defect architecture, surface architecture, subchondral bone, and tidemark as well as the overall score of cartilage repair in the defects compared with rAAV- lacZ. The overexpression of sox9 led to higher levels of proteoglycan production, stronger type II collagen deposition, and reduced type I collagen immunoreactivity in the sox9- versus lacZ-treated defects, together with decreased cell densities and DNA content. rAAV-FLAG-h sox9 enhanced semiquantitative histological subchondral bone repair, while the microstructure of the incompletely restored subchondral bone in the sox9 defects was not different from that in the lacZ defects. The articular cartilage adjacent to the sox9-treated defects showed reduced histological signs of perifocal OA changes versus rAAV- lacZ. Conclusion: rAAV-mediated sox9 gene transfer enhanced osteochondral repair in sheep after 6 months and reduced perifocal OA changes. These results underline the potential of rAAV-FLAG-h sox9 as a therapeutic tool to treat cartilage defects and afford protection against OA. Clinical Relevance: The delivery of therapeutic rAAV sox9 to sites of focal injuries may offer a novel, convenient tool to enhance the repair of osteochondral defects involving both the articular cartilage and the underlying subchondral bone and provide a protective role by reducing the extent of perifocal OA.

Funder

Deutsche Arthrose-Hilfe e.V.

universität des saarlandes

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3