Beneficial Therapeutic Approach of Acellular PLGA Implants Coupled With Rehabilitation Exercise for Osteochondral Repair: A Proof of Concept Study in a Minipig Model

Author:

Lin Chih-Chan1,Chu Chih-Jou2,Chou Pei-Hsi23,Liang Chun-Hao2,Liang Peir-In4,Chang Nai-Jen235

Affiliation:

1. Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan

2. Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan

3. PhD Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung City, Taiwan

4. Department of Pathology, Kaohsiung Medical University, Kaohsiung City, Taiwan

5. Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan

Abstract

Background: Osteochondral (OC) repair presents a significant challenge to clinicians. However, whether the use of acellular spongy poly(lactic-co-glycolic acid) (PLGA) scaffolding plus treadmill exercise as a rehabilitation program regenerates OC defects in a large-animal model has yet to be determined. Hypothesis: PLGA scaffolding plus treadmill exercise may offer improved OC repair for both high and low weightbearing regions in a minipig model. Study Design: Controlled laboratory study. Methods: A total of 9 mature minipigs (18 knees) were randomly divided into the treadmill exercise (TRE) group or sedentary (SED) group. All pigs received critically sized OC defects in a higher weightbearing region of the medial condyle and a lower weightbearing region of the trochlear groove. In each minipig, a PLGA scaffold was placed in the defect of the right knee (PLGA subgroup), and the defect of the left knee was untreated (empty defect [ED] subgroup). The TRE group performed exercises in 3 phases: warm-up, 3 km/h for 5 minutes; main exercise, 4 km/h for 20 minutes; and cool-down, 3 km/h for 5 minutes. The total duration was about 30 minutes whenever possible. The SED group was allowed free cage activity. Results: At 6 months, the TRE-PLGA group showed the highest gross morphology scores and regenerated a smooth articular surface covered with new hyaline-like tissue, while the defects of the other groups remained and contained nontransparent tissue. Histologically, the TRE-PLGA group also revealed sound OC integration, chondrocyte-like cells embedded in lacunae, abundant glycosaminoglycans, a sound collagen structure, and modest inflammatory cells with an inflammatory response (ie, tumor necrosis factor–α, interleukin-6). In addition, in the medial condyle region, the TRE-PLGA group (31.80 ± 3.03) had the highest total histological scores (TRE-ED: 20.20 ± 5.76; SED-PLGA: 10.25 ± 6.24; SED-ED: 11.75 ± 6.50; P = .004). In the trochlear groove region, the TRE-PLGA group (30.20 ± 6.42) displayed significantly higher total histological scores (TRE-ED: 19.60 ± 7.00; SED-PLGA: 10.00 ± 5.42; SED-ED: 11.25 ± 5.25; P = .006). In contrast, the SED-PLGA and SED-ED groups revealed an irregular surface with abrasion, fibrotic tissue with an empty void and inflammatory cells, disorganized collagen fibers, and less glycosaminoglycan deposition. Micro–computed tomography analysis revealed that the TRE-PLGA group had integrated OC interfaces with continued remodeling in the subchondral bone. Furthermore, comparing the 2 defect regions, no statistically significant differences in cartilage regeneration were detected, indicating the suitability of this regenerative approach for both high and low weightbearing regions. Conclusion: Implanting an acellular PLGA scaffold plus treadmill exercise promoted articular cartilage regeneration for both high and low weightbearing regions in minipigs. Clinical Relevance: This study suggests the use of a cell-free porous PLGA scaffold and treadmill exercise rehabilitation as an alternative therapeutic strategy for OC repair in a large-animal knee joint model. This combined effect may pave the way for biomaterials and exercise regimens in the application of OC repair.

Funder

kaohsiung medical university

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3