Repetitive Stresses Generate Osteochondral Lesions in Skeletally Immature Rabbits

Author:

Stone Austin V.1,Little Kevin J.2,Glos David L.2,Stringer Keith F.3,Wall Eric J.2

Affiliation:

1. Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA

2. Department of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA

3. Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA

Abstract

Background: The origin of juvenile osteochondritis dissecans (OCD) is unknown. Existing experimental animal models of OCD most frequently involve surgically created lesions but do not examine repetitive stress as a possible cause of OCD. Hypothesis: Repetitive stresses can cause OCD-like lesions in immature animals. Study Design: Controlled laboratory study. Methods: Six juvenile rabbits were subjected to repetitive loading forces of approximately 160% body weight to the right hindlimb during five 45-minute sessions per week for 5 weeks. The contralateral limb was the unloaded control. After 5 weeks, rabbits were euthanized and examined with radiographs, micro–computed tomography, and gross and histopathologic analysis. Results: All 6 rabbits developed osteochondral lesions in loaded limbs on the medial and lateral femoral condyles, while contralateral unloaded limbs did not demonstrate lesions. Loaded limbs developed relative osteopenia in the femoral epiphysis and tibial metaphysis with associated decreased trabecular density. Loaded limbs also demonstrated increased femoral subchondral bone thickness near the lesions. Lesions did not have grossly apparent extensive articular cartilage damage; however, cartilage thickness increased on histology with reduced ossification. Loaded knees demonstrated abundant chondrocyte cloning, limited cartilage fissuring, and a focal loss of cellularity at the articular surface. Conclusion: Low-grade lesions in human OCD have little gross articular cartilage involvement despite substantial changes to the subchondral bone as shown on magnetic resonance imaging and radiographs. Histopathology findings in this study included cartilage thickening and chondrocyte cloning resembling those of recently published human OCD biopsy studies. Our animal model supports the hypothesis that repetitive stress to immature knees may contribute to the development of human OCD. This model may be useful in understanding the pathophysiology and healing of human OCD. Clinical Relevance: Repetitive physiologic stress generated changes to the subchondral bone in immature animals without causing extensive articular damage. The similarities of these lesions in gross and histologic appearance with human OCD support repetitive stress as the likely the cause for human OCD.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medial femoral condyle width and osteochondritis dissecans: Cause or effect and the implications for osteochondral allograft transplantation;Journal of Cartilage & Joint Preservation;2022-08

2. Overuse injuries of the knee;Annals of Joint;2018-03

3. Ankle;Musculoskeletal Diseases 2017-2020;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3