An Anatomical and Biomechanical Comparison of Anteromedial and Anterolateral Approaches for Tibial Tunnel of Posterior Cruciate Ligament Reconstruction: Evaluation of the Widening Effect of the Anterolateral Approach

Author:

Ahn Jin Hwan1,Bae Ji Hoon2,Lee Yong Seuk3,Choi Kuiwon4,Bae Tae Soo5,Wang Joon Ho3

Affiliation:

1. Department of Orthopaedic Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea

2. Department of Orthopaedic Surgery, Korea University School of Medicine, Guro Hospital, Seoul, South Korea

3. Department of Orthopaedic Surgery, Korea University School of Medicine, Ansan Hospital, Gyeonggi-do, South Korea

4. Korea Institute of Science and Technology, Biomedical Research Center, Seoul, South Korea

5. Korea Orthopaedics and Rehabilitation Engineering Center, Incheon, South Korea

Abstract

Background An anterolateral approach to the tibial tunnel of posterior cruciate ligament reconstruction is used to reduce the sharpness of the graft-tunnel angle, the so-called killer turn effect. However, with the anterolateral approach, the tunnel might be widened into an ovoid shape because of the small angle between the tunnel and the anterolateral cortex. Hypothesis The fixation strength of the posterior cruciate ligament graft in the tibial tunnel will be weaker in the anterolateral approach compared with the anteromedial approach. Study Design Controlled laboratory study. Methods Twenty paired cadaveric tibias were used. Tibial tunnels were made using following approaches: an anteromedial approach for 10 tibias and an anterolateral approach for 10 tibias. The anterior cortex-tunnel angle and the diameter of the tunnel entrance were measured by 2-dimensional computed tomographic scans. After fixation of the Achilles tendon allograft with a biodegradable screw, the maximal strength of the graft at failure was measured using a materials testing machine. Results The mean cortex-tunnel angle was 47.5° ± 9.3° in the anteromedial approach group and 28.3° ± 7.4° in the anterolateral approach group. The mean long diameter of the tunnels in the anteromedial approach group was 10.6 ± 1.0 mm and in the anterolateral approach group it was 14.0 ± 1.5 mm. These two parameters showed statistically significant differences between the 2 groups (P < .01). The mean maximum load at failure for the anteromedial approach group was 385.4 ± 139.7 N, and for the anterolateral approach group it was 225.1 ± 144.1 N. This difference was statistically significant (P = .021). Conclusion The anterolateral approach resulted in a tunnel with a wider entrance, a more acute cortex-tunnel angle, and a lower maximal load at failure compared with tunnels created using the anteromedial approach. Clinical Relevance The use of additional fixation methods, such as post ties or ligament washers and screws, should be considered when using an anterolateral approach for tibial tunnel of posterior cruciate ligament reconstruction.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3