Affiliation:
1. Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
2. Department of Orthopaedic Surgery, Inje University and Ilsanpaik Hospital, Ilsan, South Korea
Abstract
Background The biomechanical functions of the anterolateral and posteromedial bundles of the posterior cruciate ligament over the range of flexion of the knee joint remain unclear. Hypothesis The posterior cruciate ligament bundles have minimal length at low flexion angles and maximal length at high flexion angles. Study Design Descriptive laboratory study. Methods Seven knees from normal, healthy subjects were scanned with magnetic resonance, and 3-dimensional models of the femur, tibia, and posterior cruciate ligament attachment sites were created. The lines connecting the centroids of the corresponding bundle attachment sites on the femur and tibia represented the anterolateral and posteromedial bundles of the posterior cruciate ligament. Each knee was imaged during weightbearing flexion (from 0° to maximal flexion) using a dual-orthogonal fluoroscopic system. The length, elevation, deviation, and twist of the posterior cruciate ligament bundles were measured as a function of flexion. Results The lengths of the anterolateral and posteromedial bundles increased with flexion from 0° to 120° and decreased beyond 120° of flexion. The posteromedial bundle had a lower elevation angle than the anterolateral bundle beyond 60° of flexion. The anterolateral bundle had a larger deviation angle than the posteromedial bundle beyond 75° of flexion. The femoral attachment of the posterior cruciate ligament twisted externally with increasing flexion and reached a maximum of 86.4° ± 14.7° at 135° of flexion (P < .05). Conclusion These data suggest that there is no reciprocal function of the bundles with flexion, which is contrary to previous findings. The orientation of the anterolateral and posteromedial bundles suggests that at high flexion, the anterolateral bundle might play an important role in constraining the mediolateral translation, whereas the posteromedial bundle might play an important role in constraining the anteroposterior translation of the tibia. Clinical Relevance These data provide a better understanding of the biomechanical function of the posterior cruciate ligament bundles and may help to improve the design of the 2-bundle reconstruction techniques of the ruptured posterior cruciate ligament.
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献