Optimizing Fixation for Distal Biceps Tendon Repairs: A Systematic Review and Meta-regression of Cadaveric Biomechanical Testing

Author:

Taylor Ainsley L.1,Bansal Ankit1,Shi Brendan Y.1,Best Matthew J.1,Huish Eric G.1,Srikumaran Uma1

Affiliation:

1. The Johns Hopkins University, Baltimore, Maryland, USA

Abstract

Background: Various surgical techniques can be used to repair acute distal biceps tendon (DBT) tears; however, it is unknown which type of repair or implant has the greatest biomechanical strength and presents the lowest risk of type 2 failure. Purpose: To identify associations between the type of implant or construct used and the biomechanical performance of DBT repairs in a review of human cadaveric studies. Study Design: Systematic review and meta-regression. Methods: We systematically searched the EMBASE and Medline (PubMed) databases for biomechanical studies that evaluated DBT repair performance in cadaveric specimens. Two independent reviewers extracted data from 14 studies that met our inclusion criteria. The pooled data set was subjected to meta-regression with adjusted failure load (AFL) as the primary outcome variable. Procedural parameters, such as number of sutures, cortices, locking stitches, and whipstitches, served as covariates. Adjusted analysis was performed to determine the differences among implant types. The alpha level was set at .05. Results: When using no implant (bone tunnels) as the referent, no fixation type or procedural parameter was significantly better at predicting AFL. Cortical button fixation had the highest AFL (370 N; 95% CI, −2 to 221). In an implant-to-implant comparison, suture anchor alone was significantly weaker than cortical button (154 N; 95% CI, 30 to 279). Constructs using a cortical button and interference screw were not stronger (as measured by AFL) than those using a cortical button alone. The presence of a locking stitch added 113 N (95% CI, 29 to 196) to the AFL. The use of cortical button instead of interference screws or bone tunnels was associated with lower odds of type 2 failure. Avoiding locking stitches and using more sutures in the construct were also associated with lower odds of type 2 failure. Conclusion: Cortical button fixation is associated with greater construct strength than is suture anchor repair and a lower risk of type 2 failure compared with interference screw fixation or fixation without implants. The addition of an interference screw to cortical button fixation was not associated with increased strength. The presence of a locking stitch added 113 N to the failure load but also increased the odds of type 2 failure.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3