Linear Discriminant Analysis Successfully Predicts Knee Injury Outcome From Biomechanical Variables

Author:

Schilaty Nathan D.1234,Bates Nathaniel A.123,Kruisselbrink Sydney1,Krych Aaron J.12,Hewett Timothy E.5

Affiliation:

1. Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA

2. Sports Medicine Center, Mayo Clinic, Rochester, Minnesota, USA

3. Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA

4. Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA

5. Sparta Science, Menlo Park, California, USA

Abstract

Background: The most commonly damaged structures of the knee are the anterior cruciate ligament (ACL), medial collateral ligament (MCL), and menisci. Given that these injuries present as either isolated or concomitant, it follows that these events are driven by specific mechanics versus coincidence. This study was designed to investigate the multiplanar mechanisms and determine the important biomechanical and demographic factors that contribute to classification of the injury outcome. Hypothesis: Linear discriminant analysis (LDA) would accurately classify each injury type generated by the mechanical impact simulator based on biomechanical input variables (ie, ligament strain and knee kinetics). Study Design: Controlled laboratory study. Methods: In vivo kinetics and kinematics of 42 healthy, athletic participants were measured to determine stratification of injury risk (ie, low, medium, and high) in 3 degrees of knee forces/moments (knee abduction moment, anterior tibial shear, and internal tibial rotation). These stratified kinetic values were input into a cadaveric impact simulator to assess ligamentous strain and knee kinetics during a simulated landing task. Uniaxial and multiaxial load cells and implanted strain sensors were used to collect mechanical data for analysis. LDA was used to determine the ability to classify injury outcome by demographic and biomechanical input variables. Results: From LDA, a 5-factor model (Entropy R2 = 0.26) demonstrated an area under the receiver operating characteristic curve (AUC) for all 5 injury outcomes (ACL, MCL, ACL+MCL, ACL+MCL+meniscus, ACL+meniscus) of 0.74 or higher, with “good” prediction for 4 of 5 injury classifications. A 10-factor model (Entropy R2 = 0.66) improved the AUC to 0.86 or higher, with “excellent” prediction for 5 injury classifications. The 15-factor model (Entropy R2 = 0.85), produced 94.1% accuracy with the AUC 0.98 or higher for all 5 injury classifications. Conclusion: Use of LDA accurately predicted the outcome of knee injury from kinetic data from cadaveric simulations with the use of a mechanical impact simulator at 25° of knee flexion. Thus, with clinically relevant kinetics, it is possible to determine clinical risk of injury and also the likely presentation of singular or concomitant knee injury. Clinical Relevance: LDA demonstrates that injury outcomes are largely characterized by specific mechanics that can distinguish ACL, MCL, and medial meniscal injury. Furthermore, as the mechanics of injury are better understood, improved interventional prehabilitation can be designed to reduce these injuries.

Funder

national institutes of health

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3