Descriptive Characteristics and Outcomes of Patients Undergoing Revision Anterior Cruciate Ligament Reconstruction With and Without Tunnel Bone Grafting

Author:

,DeFroda Steven F.12,Owens Brett D.32,Wright Rick W.42,Huston Laura J.42,Pennings Jacquelyn S.42,Haas Amanda K.52,Allen Christina R.62,Cooper Daniel E.72,DeBerardino Thomas M.82,Dunn Warren R.92,Lantz Brett Brick A.102,Spindler Kurt P.112,Stuart Michael J.122,Albright John P.132,Amendola Annunziato (Ned)142,Annunziata Christopher C.152,Arciero Robert A.162,Bach Bernard R.172,Baker Champ L.182,Bartolozzi Arthur R.192,Baumgarten Keith M.202,Bechler Jeffery R.212,Berg Jeffrey H.222,Bernas Geoffrey A.232,Brockmeier Stephen F.242,Brophy Robert H.52,Bush-Joseph Charles A.172,Butler J. Brad252,Carey James L.262,Carpenter James E.272,Cole Brian J.282,Cooper Jonathan M.292,Cox Charles L.42,Creighton R. Alexander302,David Tal S.312,Flanigan David C.322,Frederick Robert W.332,Ganley Theodore J.342,Garofoli Elizabeth A.52,Gatt Charles J.212,Gecha Steven R.352,Giffin James Robert362,Hame Sharon L.372,Hannafin Jo A.382,Harner Christopher D.392,Harris Norman Lindsay402,Hechtman Keith S.412,Hershman Elliott B.422,Hoellrich Rudolf G.102,Johnson David C.432,Johnson Timothy S.432,Jones Morgan H.112,Kaeding Christopher C.322,Kamath Ganesh V.302,Klootwyk Thomas E.442,Levy Bruce A.452,Ma C. Benjamin462,Maiers G. Peter472,Marx Robert G.382,Matava Matthew J.52,Mathien Gregory M.482,McAllister David R.372,McCarty Eric C.492,McCormack Robert G.502,Miller Bruce S.272,Nissen Carl W.512,O’Neill Daniel F.522,Parker Richard D.112,Purnell Mark L.532,Ramappa Arun J.542,Rauh Michael A.232,Rettig Arthur C.442,Sekiya Jon K.272,Shea Kevin G.552,Sherman Orrin H.562,Slauterbeck James R.572,Smith Matthew V.52,Spang Jeffrey T.302,Svoboda Steven J.582,Taft Timothy N.302,Tenuta Joachim J.592,Tingstad Edwin M.602,Vidal Armando F.492,Viskontas Darius G.612,White Richard A.622,Williams James S.632,Wolcott Michelle L.492,Wolf Brian R.132,York James J.642

Affiliation:

1. University of Missouri, Columbia, Missouri, USA

2. Investigation performed at the Department of Orthopaedics, Brown Alpert Medical School, Providence, Rhode Island, USA

3. Brown Alpert Medical School, Providence, Rhode Island, USA

4. Vanderbilt University, Nashville, Tennessee, USA

5. Washington University in St Louis, St Louis, Missouri, USA

6. Yale University, New Haven, Connecticut, USA

7. W.B. Carrell Memorial Clinic, Dallas, Texas, USA

8. The San Antonio Orthopaedic Group, San Antonio, Texas, USA

9. Texas Orthopedic Hospital, Houston, Texas, USA

10. Slocum Research & Education Foundation, Eugene, Oregon, USA

11. Cleveland Clinic, Cleveland, Ohio, USA

12. Mayo Clinic, Rochester, Minnesota, USA

13. University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA

14. Duke University, Durham, North Carolina, USA

15. Commonwealth Orthopaedics & Rehabilitation, Arlington, Virginia, USA

16. University of Connecticut Health Center, Farmington, Connecticut, USA

17. Rush University Medical Center, Chicago, Illinois, USA

18. The Hughston Clinic, Columbus, Georgia, USA

19. 3B Orthopaedics, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA

20. Orthopedic Institute, Sioux Falls, South Dakota, USA

21. University Orthopaedic Associates LLC, Princeton, New Jersey, USA

22. Town Center Orthopaedic Associates, Reston, Virginia, USA

23. State University of New York at Buffalo, Buffalo, New York, USA

24. University of Virginia, Charlottesville, Virginia, USA

25. Orthopedic and Fracture Clinic, Portland, Oregon, USA

26. University of Pennsylvania, Philadelphia, Pennsylvania, USA

27. University of Michigan, Ann Arbor, Michigan, USA

28. Rush University Medical Center, Chicago, IL USA

29. HealthPartners Specialty Center, St Paul, Minnesota, USA

30. University of North Carolina Medical Center, Chapel Hill, North Carolina, USA

31. Synergy Specialists Medical Group, San Diego, California, USA

32. The Ohio State University, Columbus, Ohio, USA

33. Rothman Institute/Thomas Jefferson University, Philadelphia, Pennsylvania, USA

34. Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

35. Princeton Orthopaedic Associates, Princeton, New Jersey, USA

36. Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada

37. David Geffen School of Medicine at UCLA, Los Angeles, California, USA

38. Hospital for Special Surgery, New York, New York, USA

39. University of Texas Health Center, Houston, Texas, USA

40. Grand River Health—Rifle, Rifle, Colorado, USA

41. UHZ Sports Medicine Institute, Coral Gables, Florida, USA

42. Lenox Hill Hospital, New York, New York, USA

43. National Sports Medicine Institute, Leesburg, Virginia, USA

44. Methodist Sports Medicine, Indianapolis, Indiana, USA

45. Mayo Clinic Rochester, Rochester, Minnesota, USA

46. University of California, San Francisco, California, USA

47. Methodist Sports Medicine Center, Indianapolis, Indiana, USA

48. Knoxville Orthopaedic Clinic, Knoxville, Tennessee, USA

49. University of Colorado Denver School of Medicine, Denver, Colorado, USA

50. University of British Columbia/Fraser Health Authority, British Columbia, Canada

51. Connecticut Children’s Medical Center, Hartford, Connecticut, USA

52. Littleton Regional Healthcare, Littleton, New Hampshire, USA

53. Aspen Orthopedic Associates, Aspen, Colorado, USA

54. Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

55. Intermountain Orthopaedics, Boise, Idaho, USA

56. NYU Hospital for Joint Diseases, New York, New York, USA

57. University of South Alabama, Mobile, Alabama, USA

58. Keller Army Community Hospital, United States Military Academy, West Point, New York, USA

59. Albany Medical Center, Albany, New York, USA

60. Inland Orthopaedic Surgery and Sports Medicine Clinic, Pullman, Washington, USA

61. Royal Columbian Hospital, New Westminster, British Columbia, Canada

62. Fitzgibbon’s Hospital, Marshall, Missouri, USA

63. Cleveland Clinic, Euclid, Ohio, USA

64. Orthopaedic and Sports Medicine Center, LLC, Pasedena, Maryland, USA

Abstract

Background: Lytic or malpositioned tunnels may require bone grafting during revision anterior cruciate ligament reconstruction (rACLR) surgery. Patient characteristics and effects of grafting on outcomes after rACLR are not well described. Purpose: To describe preoperative characteristics, intraoperative findings, and 2-year outcomes for patients with rACLR undergoing bone grafting procedures compared with patients with rACLR without grafting. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 1234 patients who underwent rACLR were prospectively enrolled between 2006 and 2011. Baseline revision and 2-year characteristics, surgical technique, pathology, treatment, and patient-reported outcome instruments (International Knee Documentation Committee [IKDC], Knee injury and Osteoarthritis Outcome Score [KOOS], Western Ontario and McMaster Universities Osteoarthritis Index, and Marx Activity Rating Scale [Marx]) were collected, as well as subsequent surgery information, if applicable. The chi-square and analysis of variance tests were used to compare group characteristics. Results: A total of 159 patients (13%) underwent tunnel grafting—64 (5%) patients underwent 1-stage and 95 (8%) underwent 2-stage grafting. Grafting was isolated to the femur in 31 (2.5%) patients, the tibia in 40 (3%) patients, and combined in 88 patients (7%). Baseline KOOS Quality of Life (QoL) and Marx activity scores were significantly lower in the 2-stage group compared with the no bone grafting group ( P≤ .001). Patients who required 2-stage grafting had more previous ACLRs ( P < .001) and were less likely to have received a bone–patellar tendon–bone or a soft tissue autograft at primary ACLR procedure ( P≤ .021) compared with the no bone grafting group. For current rACLR, patients undergoing either 1-stage or 2-stage bone grafting were more likely to receive a bone–patellar tendon–bone allograft ( P≤ .008) and less likely to receive a soft tissue autograft ( P≤ .003) compared with the no bone grafting group. At 2-year follow-up of 1052 (85%) patients, we found inferior outcomes in the 2-stage bone grafting group (IKDC score = 68; KOOS QoL score = 44; KOOS Sport/Recreation score = 65; and Marx activity score = 3) compared with the no bone grafting group (IKDC score = 77; KOOS QoL score = 63; KOOS Sport/Recreation score = 75; and Marx activity score = 7) ( P≤ .01). The 1-stage bone graft group did not significantly differ compared with the no bone grafting group. Conclusion: Tunnel bone grafting was performed in 13% of our rACLR cohort, with 8% undergoing 2-stage surgery. Patients treated with 2-stage grafting had inferior baseline and 2-year patient-reported outcomes and activity levels compared with patients not undergoing bone grafting. Patients treated with 1-stage grafting had similar baseline and 2-year patient-reported outcomes and activity levels compared with patients not undergoing bone grafting.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3