The Biomechanical Effects of 1.0 to 1.2 Mrad of Gamma Irradiation on Human Bone–Patellar Tendon–Bone Allografts

Author:

Yanke Adam B.1,Bell Rebecca1,Lee Andrew2,Kang Richard W.3,Mather Richard C.4,Shewman Elizabeth F.1,Wang Vincent M.15,Bach Bernard R.6

Affiliation:

1. Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois

2. Rush University Medical Center, Chicago, Illinois

3. Hospital for Special Surgery, New York, New York

4. Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina

5. Department of Biomechanics, Rush University Medical Center, Chicago, Illinois

6. Division of Sports Medicine, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois

Abstract

Background: Recent data suggest that anterior cruciate ligament (ACL) reconstruction with irradiated allograft tissue may lead to increased failure rates. Hypothesis: Low-dose (1.0-1.2 Mrad) gamma irradiation does not significantly alter the preimplantation biomechanical properties of bone–patellar tendon–bone (BTB) allografts. Study Design: Controlled laboratory study. Methods: Cyclic and failure mechanical properties were evaluated for 20 paired central-third human BTB allografts, with and without 1.0 to 1.2 Mrad of gamma irradiation. Testing included cyclic loading at 0.5 Hz for 100 cycles from 50 to 200 N and failure testing at a strain rate of 10% per second. Results: Cyclic elongation did not change significantly ( P = .151) with irradiation, increasing from a mean ± SD of 9.4 ± 2.1 mm to 11.3 ± 3.4 mm. Cyclic creep strain approached a significant increase with irradiation (1.3% ± 0.8% to 2.6% ± 1.5%; P = .076). Failure testing was not affected with irradiation with regard to maximum load (1680 ± 417 mm to 1494 ± 435 mm), maximum stress (40.8 ± 10.6 MPa to 37.5 ± 15.7 MPa), elongation (7.85 ± 1.35 mm to 8.67 ± 2.05 mm), or strain at maximum stress (0.158 ± 0.03 to 0.175 ± 0.03). Graft stiffness significantly decreased by 20% with irradiation (278 ± 67 N/mm to 221 ± 50 N/mm; P = .035). Conclusion: Low-dose (1.0-1.2 Mrad) gamma irradiation decreases BTB graft stiffness by 20%, but it does not affect other failure or cyclic parameters. Clinical Relevance: Aside from graft stiffness during load to failure testing, low-dose (1.0-1.2 Mrad) gamma irradiation of central-third human BTB allografts is not deleterious to preimplantation biomechanical properties.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3