Adaptation of Running Biomechanics to Repeated Barefoot Running: A Randomized Controlled Study

Author:

Hollander Karsten12,Liebl Dominik3,Meining Stephanie4,Mattes Klaus4,Willwacher Steffen5,Zech Astrid6

Affiliation:

1. Department of Sports and Exercise Medicine, Institute of Human Movement Science, University of Hamburg, Hamburg, Germany

2. Department of Sports and Rehabilitation Medicine, BG Trauma Hospital of Hamburg, Hamburg, Germany

3. Department of Financial Economics and Statistics, Bonn University, Bonn, Germany

4. Department of Human Movement and Exercise Science, Institute of Human Movement Science, University of Hamburg, Hamburg, Germany

5. Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany

6. Department of Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Jena, Germany

Abstract

Background: Previous studies have shown that changing acutely from shod to barefoot running induces several changes to running biomechanics, such as altered ankle kinematics, reduced ground-reaction forces, and reduced loading rates. However, uncertainty exists whether these effects still exist after a short period of barefoot running habituation. Purpose/Hypothesis: The purpose was to investigate the effects of a habituation to barefoot versus shod running on running biomechanics. It was hypothesized that a habituation to barefoot running would induce different adaptations of running kinetics and kinematics as compared with a habituation to cushioned footwear running or no habituation. Study Design: Controlled laboratory study. Methods: Young, physically active adults without experience in barefoot running were randomly allocated to a barefoot habituation group, a cushioned footwear group, or a passive control group. The 8-week intervention in the barefoot and footwear groups consisted of 15 minutes of treadmill running at 70% of VO2 max (maximal oxygen consumption) velocity per weekly session in the allocated footwear. Before and after the intervention period, a 3-dimensional biomechanical analysis for barefoot and shod running was conducted on an instrumented treadmill. The passive control group did not receive any intervention but was also tested prior to and after 8 weeks. Pre- to posttest changes in kinematics, kinetics, and spatiotemporal parameters were then analyzed with a mixed effects model. Results: Of the 60 included participants (51.7% female; mean ± SD age, 25.4 ± 3.3 years; body mass index, 22.6 ± 2.1 kg·m-2), 53 completed the study (19 in the barefoot habituation group, 18 in the shod habituation group, and 16 in the passive control group). Acutely, running barefoot versus shod influenced foot strike index and ankle, foot, and knee angles at ground contact ( P < .001), as well as vertical average loading rate ( P = .003), peak force ( P < .001), contact time ( P < .001), flight time ( P < .001), step length ( P < .001), and cadence ( P < .001). No differences were found for average force ( P = .391). After the barefoot habituation period, participants exhibited more anterior foot placement ( P = .006) when running barefoot, while no changes were observed in the footwear condition. Furthermore, barefoot habituation increased the vertical average loading rates in both conditions (barefoot, P = .01; shod, P = .003) and average vertical ground-reaction forces for shod running ( P = .039). All other outcomes (ankle, foot, and knee angles at ground contact and flight time, contact time, cadence, and peak forces) did not change significantly after the 8-week habituation. Conclusion: Changing acutely from shod to barefoot running in a habitually shod population increased the foot strike index and reduced ground-reaction force and loading rates. After the habituation to barefoot running, the foot strike index was further increased, while the force and average loading rates also increased as compared with the acute barefoot running situation. The increased average loading rate is contradictory to other studies on acute adaptations of barefoot running. Clinical Relevance: A habituation to barefoot running led to increased vertical average loading rates. This finding was unexpected and questions the generalizability of acute adaptations to long-term barefoot running. Sports medicine professionals should consider these adaptations in their recommendations regarding barefoot running as a possible measure for running injury prevention. Registration: DRKS00011073 (German Clinical Trial Register).

Funder

Ministry for Science and Research in Hamburg

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3