Pitching Mechanics and the Relationship to Accuracy in Professional Baseball Pitchers

Author:

Manzi Joseph E.1,Dowling Brittany2ORCID,Wang Zhaorui1ORCID,Luzzi Andrew3,Thacher Ryan4,Rauck Ryan C.4,Dines Joshua S.4

Affiliation:

1. Weill Cornell Medical College, New York, NY, USA

2. Sports Performance Center, Midwest Orthopaedics at Rush, Oak Brook, Illinois, USA

3. Columbia University Irving Medical Center Orthopedic Surgery, New York, New York, USA

4. Sports Medicine Institute, Hospital for Special Surgery, New York, New York, USA

Abstract

Background: Biomechanical predictors of pitching accuracy are underevaluated in baseball research. It is unclear how pitchers with higher accuracy differ in terms of kinematics and upper extremity kinetics. Purpose: To differentiate high- and low-accuracy professional pitchers by full-body kinematic and upper extremity kinetic parameters. Study Design: Descriptive laboratory study. Methods: In total, 121 professional baseball pitchers threw 8 to 12 fastballs while assessed with motion-capture technology (480 Hz). Pitchers were divided into high-accuracy (n = 33), moderate-accuracy (n = 52), and low-accuracy (n = 36) groups based on the absolute center deviation of each pitcher’s average pitch to the center of the pitching chart by greater or less than 0.5 SD from the mean, respectively. The 95% confidence ellipses with comparisons of major and minor radii and pitching probability density grids were constructed. Analysis of variance was used to compare kinematic and kinetic values between groups. Results: The absolute center deviation (14.5% ± 6.7% vs 33.5% ± 3.7% grid width; P < .001) was significantly lower in the high-accuracy compared with the low-accuracy group, with no significant difference in ball velocity (38.0 ± 1.7 vs 38.5 ± 2.0 m/s; P = .222). Lead knee flexion at ball release (30.6°± 17.8° vs 40.1°± 16.3°; P = .023) was significantly less for the high-accuracy pitchers. Peak normalized shoulder internal rotation torque (5.5% ± 1.0% vs 4.9% ± 0.7% body weight [BW] × body height [BH]; P = .008), normalized elbow varus torque (5.4% ± 1.0% vs 4.8% ± 0.7% BW × BH; P = .008), and normalized elbow medial force (42.9% ± 7.3% vs 38.6% ± 6.2% BW; P = .024) were significantly greater for the low-accuracy group compared with the high-accuracy group. Conclusion: Professional pitchers with increased accuracy experienced decreased throwing arm kinetics. These pitchers had increased lead knee extension at later stages of the pitch, potentially providing more stable engagement with the ground and transference of kinetic energy to the upper extremities. Professional pitchers can consider increasing lead knee extension at the final stages of the pitch to improve the accuracy of their throws and mitigate elbow varus torque. Clinical Relevance: Increased elbow varus torque, shoulder internal rotation torque, and elbow medial force in less accurate pitchers may contribute to increased injury risk in this group.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3