Anterolateral Knee Extra-articular Stabilizers: A Robotic Sectioning Study of the Anterolateral Ligament and Distal Iliotibial Band Kaplan Fibers

Author:

Geeslin Andrew G.1,Chahla Jorge1,Moatshe Gilbert123,Muckenhirn Kyle J.1,Kruckeberg Bradley M.1,Brady Alex W.1,Coggins Ashley1,Dornan Grant J.1,Getgood Alan M.4,Godin Jonathan A.1,LaPrade Robert F.15

Affiliation:

1. Steadman Philippon Research Institute, Vail, Colorado, USA

2. Oslo University Hospital and University of Oslo, Oslo, Norway

3. Oslo Sports Trauma Research Center, Norwegian School of Sports Sciences, Oslo, Norway

4. Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada

5. The Steadman Clinic, Vail, Colorado, USA

Abstract

Background: The individual kinematic roles of the anterolateral ligament (ALL) and the distal iliotibial band Kaplan fibers in the setting of anterior cruciate ligament (ACL) deficiency require further clarification. This will improve understanding of their potential contribution to residual anterolateral rotational laxity after ACL reconstruction and may influence selection of an anterolateral extra-articular reconstruction technique, which is currently a matter of debate. Hypothesis/Purpose: To compare the role of the ALL and the Kaplan fibers in stabilizing the knee against tibial internal rotation, anterior tibial translation, and the pivot shift in ACL-deficient knees. We hypothesized that the Kaplan fibers would provide greater tibial internal rotation restraint than the ALL in ACL-deficient knees and that both structures would provide restraint against internal rotation during a simulated pivot-shift test. Study Design: Controlled laboratory study. Methods: Ten paired fresh-frozen cadaveric knees (n = 20) were used to investigate the effect of sectioning the ALL and the Kaplan fibers in ACL-deficient knees with a 6 degrees of freedom robotic testing system. After ACL sectioning, sectioning was randomly performed for the ALL and the Kaplan fibers. An established robotic testing protocol was utilized to assess knee kinematics when the specimens were subjected to a 5-N·m internal rotation torque (0°-90° at 15° increments), a simulated pivot shift with 10-N·m valgus and 5-N·m internal rotation torque (15° and 30°), and an 88-N anterior tibial load (30° and 90°). Results: Sectioning of the ACL led to significantly increased tibial internal rotation (from 0° to 90°) and anterior tibial translation (30° and 90°) as compared with the intact state. Significantly increased internal rotation occurred with further sectioning of the ALL (15°-90°) and Kaplan fibers (15°, 60°-90°). At higher flexion angles (60°-90°), sectioning the Kaplan fibers led to significantly greater internal rotation when compared with ALL sectioning. On simulated pivot-shift testing, ALL sectioning led to significantly increased internal rotation and anterior translation at 15° and 30°; sectioning of the Kaplan fibers led to significantly increased tibial internal rotation at 15° and 30° and anterior translation at 15°. No significant difference was found when anterior tibial translation was compared between the ACL/ALL- and ACL/Kaplan fiber–deficient states on simulated pivot-shift testing or isolated anterior tibial load. Conclusion: The ALL and Kaplan fibers restrain internal rotation in the ACL-deficient knee. Sectioning the Kaplan fibers led to greater tibial internal rotation at higher flexion angles (60°-90°) as compared with ALL sectioning. Additionally, the ALL and Kaplan fibers contribute to restraint of the pivot shift and anterior tibial translation in the ACL-deficient knee. Clinical Relevance: This study reports that the ALL and distal iliotibial band Kaplan fibers restrain anterior tibial translation, internal rotation, and pivot shift in the ACL-deficient knee. Furthermore, sectioning the Kaplan fibers led to significantly greater tibial internal rotation when compared with ALL sectioning at high flexion angles. These results demonstrate increased rotational knee laxity with combined ACL and anterolateral extra-articular knee injuries and may allow surgeons to optimize the care of patients with this injury pattern.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3